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BASIC BOOKS IN SCIENCE

About this Series

All human progress depends on education: to get it we
need books and schools. Science Education is especially
important.

Unfortunately, books and schools are not always easy to
find. But nowadays all the world’s knowledge should be
freely available to everyone – through the Internet that
connects all the world’s computers.

The aim of the Series is to bring basic knowledge in
all areas of science within the reach of everyone. Every
Book will cover in some depth a clearly defined area,
starting from the very beginning and leading up to uni-
versity level, and will be available on the Internet at no
cost to the reader. To obtain a copy it should be enough
to make a single visit to any library or public office with
a personal computer and a telephone line. Each book
will serve as one of the ‘building blocks’ out of which Sci-
ence is built; and together they will form a ‘give-away’
science library.
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About this book

This book, like the others in the Series, is written in
simple English – the language most widely used in sci-
ence and technology. It takes the next big step beyond
“Number and symbols” (the subject of Book 1), starting
from our first ideas about the measurement of distance
and the relationships among objects in space. It goes
back to the work of the philosophers and astronomers of
two thousand years ago; and it extends to that of Ein-
stein, whose work laid the foundations for our present-
day ideas about the nature of space itself. This is only
a small book; and it doesn’t follow the historical route,
starting from geometry the way Euclid did it (as we
learnt it in our schooldays); but it aims to give an easier
and quicker way of getting to the higher levels needed
in Physics and related sciences.
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Looking ahead –
Like the first book in the Series, Book 2 spans more
than two thousand years of discovery. It is about the
science of space – geometry – starting with the Greek
philosophers, Euclid and many others, and leading to
the present – when space and space travel is written
about even in the newspapers and almost everyone has
heard of Einstein and his discoveries.

Euclid and his school didn’t trust the use of numbers in
geometry (you saw why in Book 1): they used pictures
instead. But now you’ve learnt things they didn’t know
about – and will find you can go further, and faster,
by using numbers and algebra. And again, you’ll pass
many ‘milestones’:

• In Chapter 1 you start from distance, expressed
as a number of units, and see how Euclid’s ideas
about straight lines, angles and triangles can be
‘translated’ into statements about distances and
numbers.

• Most of Euclid’s work was on geometry of the
plane; but in Chapter 2 you’ll see how any point
in a plane is fixed by giving two numbers and how
lines can be described by equations.

• The ideas of area and angle come straight out
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of plane geometry (in Chapter 3): you find how to
get the area of a circle and how to measure angles.

• Chapter 4 is hard, because it ties together so
many very different ideas, mostly from Book 1 –
operators, vectors, rotations, exponentials,
and complex numbers – they are all connected!

• Points which are not all in the same plane, lie in
3-dimensional space – you need three numbers
to say where each one is. In Chapter 5 you’ll find
the geometry of 3-space is just like that of 2-space;
but it looks easier if you use vectors.

• Plane shapes, such as triangles, have properties
like area, angle and side-lengths that don’t change
if you move them around in space: they belong to
the shape itself and are called invariants. Euclid
used such ideas all the time. Now you’ll go from
2-space to 3-space, where objects also have vol-
ume; and you can still do everything without the
pictures.

• After two thousand years people reached the
last big milestone (Chapter 7): they found that
Euclid’s geometry was very nearly, but not quite,
perfect. And you’ll want to know how Einstein
changed our ideas.
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Chapter 1

Euclidean space

1.1 Distance

At the very beginning of Book 1 we talked about mea-
suring the distance from home to school by counting
how many strides, or paces, it took to get there: the
pace was the unit of distance and the number of paces
was the measure of that particular distance. Now we
want to make the idea more precise.

The standard unit of distance is ‘1 metre’ (or 1 m, for
short) and is defined in a ‘measuring-rod’, with marks
at its two ends, the distance between them fixing the
unit. Any other pair of marks (e.g. on some other rod,
or stick) are also 1 m apart if they can be put in contact,
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at the same time, with those on the standard rod; and
in this way we can make as many copies of the unit
as we like, all having the same length. In Book 1 we
measured distances by putting such copies end-to-end
(the ‘law of combination’ for distances) and if, say, three
such copies just reached from one point to another then
the two points were ‘3 m apart’ – the ‘distance between
them was 3 m’, or ‘the length of the path from one to
the other was 3 m’ (three different ways of saying the
same thing!).

Now the number of units needed to reach from one point
‘A’ to another point ‘B’ will depend on how they are put
together: if they form a ‘wiggly’ line, like a snake, you
will need more of them – the path will be longer. But
the distance does not change: it is the unique (one
and one only) shortest path length leading from A to
B. (Of course the path length may not be exactly a
whole number of units, but by setting up smaller and
smaller ‘mini-units’ – as in Book 1, Chapter 4 – it can
be measured as accurately as we please and represented
by a decimal number.) The important thing is that the
distance AB is the length of the shortest path between A
and B. In practice, this can be obtained by marking the
units (and mini-units) on a string, or tape, instead of
a stiff measuring-rod: when the tape measure is pulled
tight it can give a fairly accurate measure of the distance
AB. The shortest path defines a straight line between
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the points A and B.

One thing we must remember about measuring distance
(or any other quantity, like mass or time) – it’s always
a certain number of units, not the number itself. The
distance from home to school may be 2000 m (the unit
being the metre), but 2000 by itself is just a number:
quantity = number × unit, where the number is the
measure of the quantity in terms of a chosen unit. We
can always change the unit: if a distance is large we can
measure it in kilometres (km) and since 1 km means
1000 m the distance (d, say) from home to school will
be d = 2000 m = 2 km. If we make the unit a thou-
sand times bigger, the number that measures a certain
quantity will become a thousand times smaller. Thus,

d = old measure× old unit
= new measure× new unit
= old measure

1000
× (1000× old unit)

and the same rule always holds. In some countries the
unit of distance is the ‘mile’ and there are roughly 8 km
to every 5 miles: 1 mile = (8/5) km. Thus, if I want
a distance in miles instead of kilometers, (new unit)=
(8/5)×(old unit) and (new measure)=(5/8)×(old mea-
sure). In this way we see the distance to the school
is (5/8)×2 mile = 1.25 mile. Doing calculations with
quantities is often called ‘quantity calculus’ – but there’s
nothing mysterious about it, it’s just ‘common sense’ !

3



Euclidean geometry (the science of space) is based on
the foundations laid by Euclid, the Greek philosopher,
working around 300 BC) it starts from the concepts of
points and straight lines; and it still gives a good de-
scription of the spatial relationships we deal with in ev-
eryday life. But more than 2000 years later Einstein
showed that, in dealing with vast distances and objects
travelling at enormous speeds, Euclidean geometry does
not quite fit the experimental facts: the theory of rela-
tivity was born. One of the fundamental differences, in
going from Euclid to Einstein, is that the shortest path
between two points is not quite a ‘straight line’ – that
space is ‘curved’. There is nothing strange about this:
a ship does not follow the shortest path between two
points on the surface of the earth – because the earth is
like a big ball, the surface is not flat, and what seems
to be the shortest path (according to the compass) is in
reality not a straight line but a curve. The strange thing
is that space itself is very slightly ‘bent’, especially near
very heavy things like the sun and the stars, so that Eu-
clid’s ideas are never perfectly correct – they are simply
so close to the truth that, in everyday life, we can accept
them without worrying.

In nearly all of Book 2 we’ll be talking about Euclidean
geometry. But instead of doing it as Euclid did – and as
it’s done even today in many schools all over the world
– we’ll make use of algebra (Book 1) from the start. So
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we won’t follow history. Remember, the Greeks would
not accept irrational numbers (Book 1, Chapter 4) so
they couldn’t express their ideas about space in terms
of distances and had to base their arguments entirely on
pictures, not on numbers. This was why algebra and ge-
ometry grew up separately, for two thousand years. By
looking at mathematics as a whole (not as a subject with
many branches, such as algebra, geometry, trigonome-
try) we can reach our goal much more easily.

1.2 Foundations of Euclidean ge-

ometry

The fact that the space we live in has a ‘distance prop-
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erty’ – that we can experimentally measure the distance
between any two points, A and B say, and give it a
number – will be our starting point. We make it into
an ‘axiom’ (one of the basic principles, which we take as
‘given’):

The distance axiom

There is a unique (one and one only) short-
est path between two points, A and B, called
the straight line AB; its length is the distance
between A and B.

The first thing we have to do is talk about the properties
of straight lines and the way they give us a foundation
for the whole of Euclidean geometry. In fact, Euclid’s ge-
ometry can be built up from the following ‘construction’,
indicated in Fig.1, which can be checked by experiment.
We take it as a second axiom:

The metric axiom

Given any two points, A and B, we can find a
third, which we call the ‘origin’ O, such that
the distances OA,OB, and AB are related
by

AB2 = OA2 + OB2 (1.1)

and if the straight lines OA and OB are ex-
tended as far as we please (as in Fig.1) then
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the distance A′B′, between any two other
points (A′, B′) is given by the same formula:
(A′B′)2 = (OA′)2 + (OB′)2. (Note that AB,
A′B′, etc. denote single quantities, lengths,
not products.)

Whenever this construction is possible mathematicians
talk about Euclidean space; and say that (1.1) defines
the ‘metric’ for such a space (‘metric’ meaning simply
that distances can be measured). You can test (1.1)
by taking special cases. For example, with OA = 3 cm
(‘cm’ meaning ‘centimetre’, with 100 cm =1 m) and OB
= 4 cm you will find AB = 5 cm; and 32 = 9, 42 = 16,
so the sum of the squares is 9 + 16 = 25 – which is 52.
The same formula is satisfied by OA = 5 cm, OB= 12
cm, and AB= 13 cm (25 + 144 = 169 = 132). If you
take OA= 4 cm, OB = 5 cm you should find AB =
6.403 cm, because 6.403 is the square root of 41 (= 16
+ 25). This construction gives us several new ideas and
definitions:

• The lines OA and OB in Fig.1 are perpendicular
or at right angles. The straight lines formed by
moving A and B further and further away from
the origin O, in either direction, are called axes.
OX is the x-axis, OY is the y-axis.

• The points O, A, and B, define a ‘right-angled’ tri-
angle, OAB, with the straight lines OA,OB,AB as
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its three sides. (The ‘tri’ means three and the ‘an-
gle’ refers to the lines OA and OB and will measure
how much we must turn one line around the origin
O to make it point the same way as the other line
– more about this later!)

• All straight lines, such as AB or A′B′, which in-
tersect (i.e. cross at a single point) both axes, are
said to ‘lie in a plane’ defined by the two axes.

From the axiom (1.1) and the definitions which follow
it, the whole of geometry – the science we need in mak-
ing maps, in dividing out the land, in designing build-
ings, and everything else connected with relationships
in space – can be built up. Euclid started from different
axioms and argued with pictures, obtaining key results
called theorems and other results (called corollaries)
that follow directly from them. He proved the theorems
one by one, in a logical order where each depends on
theorems already proved. He published them in the 13
books of his famous work called “The Elements”, which
set the pattern for the teaching of geometry through-
out past centuries. Here we use instead the methods of
algebra (Book 1) and find that the same chain of theo-
rems can be proved more easily. Of course we won’t try
to do the whole of geometry; but we’ll look at the first
few links in the chain – finding that we don’t need to
argue with pictures, we can do it all with numbers! The
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pictures are useful because they remind us of what we
are doing; but our arguments will be based on distances
and these are measured by numbers.

This way of doing things is often called analytical ge-
ometry, but it’s better not to think of it as something
separate from the rest – it’s just a part of a ‘unified’
(‘made-into-one’) mathematics.

Exercises

(1) Make a tape measure from a long piece of tape or
string, using a metre rule to mark the centimetres, and
use it to measure

• the distance (d) between opposite corners of this
page of your book;

• the lengths of the different sides (x and y);

• the distance (AB) between two points (A and B)
on the curved surface of a big drum (like the ones
used for holding water), keeping the tape tightly
stretched and always at the same height;

• the distance between A and B (call it L), when A
and B come close together and the tape goes all
the way round (this is called the circumference
of the drum);

• the distance in a straight line between two opposite
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points on the bottom edge of the drum (this – call
it D – is the diameter of the drum).

(2) Check that the sum of x2 and y2 gives you d2, as
(1.1) says it should.

(3) Note that L is several times bigger than D: how
many? (Your answer should give you roughly the num-
ber π (called “pi”) that gave the Greeks so much trouble
– as we know from Book 1)

(4) In some countries small distances are measured in
“inches” instead of cm, 1 inch being roughly 2.5 cm (the
length of the last bit of your thumb). Put into inches
all the distances you measured in Exercise 1. Show that
the answers you got in Exercises 2 and 3 are unchanged.

(5) Make a simple set square – a triangle like OAB in
Fig.1, with sides of 9 cm, 12 cm and 15 cm, cut out from
a piece of stiff card. Use it to mark out axes OX and
OY on a big sheet of paper (e.g. newspaper or wrapping
paper). Then choose several pairs of points, like A,B or
A′,B′ in Fig.1, and verify that the distances AB,A′B′

etc. are always related to OA and OB (or OA′ and OB′

etc.) by equation (1.1).

(6) Take a big rectangular box and measure the lengths
(a, b, c) of the three different edges and the distance (d)
between opposite corners (the ones as far apart as you
can get). Show, from your measurements, that d2 ≈
a2 + b2 + c2, where the sign ≈ means ‘approximately’ or
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‘nearly’ equal. Use the formula (1.1) to show that the
‘exact’ result should be

d2 = a2 + b2 + c2.

(Measurements are never quite perfect – so you can
never use them to prove something.)

11



Chapter 2

Two-dimensional space

2.1 Parallel straight lines.

Rectangles

A plane has been defined in the last Section: it is a re-
gion based on two intersecting straight lines of unlimited
length, called axes. All straight lines which cut the two
axes lie in the same plane and any pair with one point in
common (to take as ‘origin’) can be used as alternative
axes. Such a plane is a two-dimensional region called,
for short, a 2-space.

A special relationship between two intersecting straight
lines is perpendicularity, defined in Section 1.2: two lines
are perpendicular when they form a right angle. Thus,
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the lines AB and AP in Fig.2 are perpendicular and
BP 2 = AB2 + AP 2. (Note that the lines AQ and BP,
shown as ‘broken’ lines in the Figure, are only put in
to help us: they are “construction lines”. Also AQ, for
example, shown in Italic (sloping) type as AQ, is used
to mean the length of the line AQ, which is measured
by a single number.)

We now need another definition:

Definition. If two straight lines in a plane
are perpendicular to a third, they are said
to be parallel.

Let’s also note that in our 2-space all our straight lines
lie in the same plane – so we won’t always say it!

With this definition we can go to a first theorem:
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Theorem. Any straight line perpendicular
to one of two parallel straight lines is also
perpendicular to the other.

Proof (If you find a proof hard, skip it; you can come
back to it any time.)

Suppose AB and PQ in Fig.2 are parallel, both being
perpendicular to AP (as in the Definition), and that
BQ is the other straight line perpendicular to AB. Then
we must show that BQ is also perpendicular to PQ. In
symbols, using (1.1),

Given AP 2 + PQ2 = AQ2,

show that BQ2 + QP 2 = BP 2 = BA2 + AP 2.

We must show that there is a point Q such that these
relationships hold.

The lengths BQ and QP are unknown (they depend on
where we put Q), but the possibilities are

(a) BQ = AP, PQ = AB,
(b) BQ = AP, PQ 6= AB,
(c) BQ 6= AP, PQ = AB,
(d) BQ 6= AP, PQ 6= AB.

It is easy to see that (b) is not possible, because if BQ =
AP then AQ2 = AB2+BQ2 = AB2+AP 2; while AQ2 =
AP 2 + PQ2. The two expressions for AQ2 are only the
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same when PQ = AB, so possibility (b) is ruled out;
and, by a similar argument, so is (c).

If we accept (a), it follows that BQ2 +QP 2 = BP 2 (=
BA2 + AP 2) and this is the condition for the lines BQ
and QP to be perpendicular: the theorem is then true.
But when Q is fixed in this way possibility (d) is also
ruled out – because it would mean there was another
crossing point, Q′ say, with BQ′ 6= BQ and PQ′ 6= PQ,
whereas the perpendicular from B can intersect another
line at only one point, already found. So (a) must apply
and the theorem follows: BQ is perpendicular to PQ.

The proof of the theorem introduces other ideas:

(i) Plane ‘figures’ (or shapes), like the ‘box’ in Fig.2, are
formed when two pairs of parallel lines intersect at right
angles: they are called rectangles and their opposite
sides are of equal length. When all sides have the same
length the shape is a square.

(ii) There is only one shortest path from a point to a
given straight line, this forming the line from the point
to the given line and perpendicular to it.

(iii) The shortest path between two parallel straight
lines, in a plane, is a straight line perpendicular to both;
and all such paths have exactly the same length. This
rules out the possibility of the parallel lines ever meet-
ing (one of Euclid’s first axioms), since the shortest path
would then have zero length for all pairs of points and
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the two lines would then coincide (i.e. there would be
only one).

2.2 Points and straight lines in

2-space

We’re now ready to describe any point in a plane by
means of two numbers (more correctly they are distances
but as in Book 1, Chapter 1 we’ll often call them ‘num-
bers’, each distance being a number of units). Suppose
the plane is defined by two axes, OX and OY in Fig.3,
which we take to be perpendicular. From any point P we
can drop perpendiculars onto OX and OY; and the posi-
tion of the point P is then fixed by giving two distances,
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OQ (= RP ) and OR (=PQ), the equalities following be-
cause ORPQ is a rectangle. These two distances, which
we denote by x and y respectively, are called the rect-
angular (or ‘Cartesian’) coordinates of P with re-
spect to the axes OX and OY. We’ll always use axes
that are perpendicular, for simplicity, and x, y are also
called the projections of the line OP, from the origin to
the point, on the axes. Any point in the plane is shown
by giving its coordinates (x, y); and the whole of plane
geometry can be developed algebraically in terms of the
number-pairs (x, y) defining the points we want to talk
about.

First let’s think about straight lines. If P and P′ are
any two points in the plane we can drop perpendiculars,
as in Fig.4, to find their coordinates, namely (x, y) and
(x′, y′). From the results earlier in this Section, the line
from P to P′ has projections QQ′ = x′ − x and RR′ =
y′ − y on the two axes; and QQ′ = PS, RR′ = PT .
The length of the line PP′, the separation of P and P′

(denoted by s) thus follows from

s2 = (x′ − x)2 + (y′ − y)2 (2.1)

and this is true no matter how close or far apart P and
P′ may be. The starting point for Euclidean geometry
(1.1) is now expressed in terms of coordinates in the
form (2.1): it is usually written in the case where P and
P′ are very close, so x′ − x and y′ − y are very small
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differences which we denote by dx and dy, respectively,
and call differentials. More about differentials in Book
3, Section 2.3. For now, just note that “d” in Roman
type (written with a straight back) is used to mean that
dx is “a little bit of x”, not a product of two quantities
d and x. (Remember that numbers and quantities are
always shown in Italic, sloping, type.)

For points close enough together, then, (2.1) can be writ-
ten

ds2 = dx2 + dy2, (2.2)

which is called the ‘fundamental metric form’. In Eu-
clidean space, the ‘sum-of-squares’ form is true whether
the separation of two points is large or small: but if
you are making a map you must remember that the sur-
face of the earth is curved – so you can use (2.2) for
small distances (e.g. your town) but not for large dis-
tances – your country. (Strictly speaking, (2.2) is only
true ‘in the limit’ (see Book 1, Chapter 4) when the
distances go to zero.) Space may be only locally Eu-
clidean. Within the last hundred years our ideas about
space have changed a lot, but in everyday life Euclidean
geometry still serves perfectly well.

Now let’s ask how to describe a straight line using rect-
angular Cartesian coordinates. Suppose the line inter-
sects the y-axis at the point A with coordinates (0, c)
and that it is fixed by giving the coordinates (x1, y1) of
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just one other point, B, that lies on it (see Fig.5). The
points A,B,C then define a right-angled triangle, whose
sides AC and BC have lengths such that (BC/AC) = m:
we say they stand in some definite ratio m, which is just
a number – whatever units we use in measuring them.
In terms of coordinates, this means y1 − c = mx1; and
it then follows that the coordinates (x, y) of any point
D, on the same line, are related in a similar way:

y = c + mx. (2.3)

To test that the new point D, with coordinates related
by (2.3), does lie on the same shortest path between
A and B, we can use the length formula (2.1): thus
AB2 = (y1−c)2 +mx2

1 = (1+m2)x2
1, AD2 = (1+m2)x2,

and DB2 = (1 + m2)(x1 − x)2. On taking the square
roots, AB =

√
1 + m2 x1, AD =

√
1 + m2 x, DB =√

1 + m2 (x1 − x).

From this it follows that AD + DB = AB; but this
means that the two paths, AB and ADB (i.e. A to B,
passing through the new point D), both have the same
length – that of the unique shortest path between A and
B. When the coordinates of any point D are related by
(2.3) then that point lies on the straight line through A
and B.

We say that (2.3) is the ‘equation of a straight line’,
m = BC/AC being called the slope of the line and
c = OA being its intercept on the y-axis.
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Note that equation (2.3) will describe any straight line
in the plane OXY and that the proof just given does
not depend on point D being between A and B: if, for
example, x > x1, Fig.5 would show D on the line ex-
tended beyond B; and a similar argument would show
that B must lie on the straight line AD. But we don’t
have to draw a different picture for every possible case:
if x, y refer to points on the left of the y-axis, or beneath
the x-axis, they will simply take negative values – and,
as the laws of algebra hold for any numbers, our results
will always hold good.

Sometimes two lines in a plane will cross, meeting at
some point P, as in Fig.6. Whether they do or not is an
important question – which was the starting point for
all of Euclid’s great work.
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2.3 When and where will two

straight lines meet?

Let’s now look again at Euclid’s ‘parallel axiom’ – that
two parallel straight lines never meet. What does it
mean in algebra?

Suppose the two lines have equations like (2.3) but with
different values of slope (m) and intercept (c): let’s say

y = c1 + m1x, y = c2 + m2x. (2.4)

In Fig.6 two such lines cross at the point P. How can
we find it? The first equation in (2.4) relates the x and
y coordinates of any point on Line 1, while the second
equation does the same for any point on Line 2. At a
crossing point, the same values must satisfy both equa-
tions, which are then called simultaneous equations
(both must hold at the same time). It is easy to find
such a point in any given case: thus, if m1 = 1, m2 = 2
and c1 = 1, c2 = −1, the values of x and y must be such
that

y = 1 + x and y = −1 + 2x,

which arise by putting the numerical values in the two
equations. Thus, we ask that 1 + x = −1 + 2x at the
crossing point; and this gives (see the Exercises in Book
1, Chapter 3) x = 2, with a related value of y = 1+x =
3. This situation is shown in Fig.6, Point P being (2,3).
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If, instead, we took the second line to have the same
slope (m2 = 2) but with c2 = 3, the result would be
x = −2, y = −1. Try to get this result by yourself.

Finally, suppose the two lines have the same slope, m1 =
m2 = m. In this case (x, y) at the crossing point must
be such that

y = c1 + mx = c2 + mx,

which can be true only if c1 = c2, whatever the common
slope of the two lines: but then the two lines would be-
come the same (same slope and same intercept) – there
would be only one! All points on either line would be
‘crossing points’. As long as m1 6= m2 we can find a
true crossing point for c1 6= c2; but as m1 and m2 be-
come closer and closer the distance to the crossing point
becomes larger and larger. This ‘Point 3’ can’t be shown
in Fig.6 – it is ‘the point at infinity’ !

This simple example is very important: it shows how
an algebraic approach to geometry, based on the idea of
distance and the metric (1.1), can lead to general solu-
tions of geometrical problems, without the need to draw
pictures for all possible situations; and it shows that Eu-
clid’s famous axiom, that parallel lines never meet, then
falls out as a first result.

Before going on, let’s look at one other simple shape in
2-space – the circle which the ancients thought was the
most perfect of all shapes. It’s easy enough to draw a
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perfect circle: you just hammer a peg into the ground
and walk round it with some kind of marker, attached
to the peg by a tightly stretched piece of string – the
marker will mark out a circle! But how do you describe
it in algebra?

Let’s take the peg as origin O and the marker as point P,
with coordinates x, y, say. Then if your string has length
l, and you keep it tight, you know that the distance OP
(the third side of a right-angled triangle, the other sides
having lengths x and y) will always be the same – always
l. But with the sum-of-squares metric this means

x2 + y2 = l2 = constant, (2.5)

however x and y may change. We say this is the “equa-
tion of a circle” with its centre at the origin O; just as
(2.4) was the equation of a straight line, with a given
slope (m) and crossing the y-axis at a certain point
(y = c). The equation of the circle is of the ‘second
degree’ (x and y being raised to the power 2); while
that of the line is of the ‘first degree’ or linear. In the
Exercises and in other Chapters you’ll find many more
examples.

Exercises

1) Suppose the corners of the rectangle in Fig.3 are at
the points O(0,0), Q(3,0), P(3,4), R(0,4) and draw the
straight line y = 1

2
x. At what point does it meet the
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side QP? (Any point on QP must have x = 3. So you
only need to choose y.)

2) What happens if the line through the origin in Ex.1
is changed to y = 2x? (The point found in Ex.1 lies
between Q and P: it is an internal point. The new point
will lie on QP extended (beyond P): it is an external
point, lying outside QP.)

3) Repeat Exercises 1 and 2, using in turn the lines

y = 3− 1
2
x, y = 3−2x, y = −3+ 1

2
x, y = −3+2x,

and describe your results.

4) Instead of using equation (2.3), take y = 2 + 1
2
x2

and draw the curve of y against x. The new equa-
tion describes a parabola. Find values of x and y
that fit the equation, using, in turn, the values x =
−3,−2,−1, 0, +1, +2, +3 and ‘plot’ them (i.e. mark the
points in a Figure and join them by a curved line.)

Find the points where the straight lines in Ex.3 cross the
parabola (you need to know how to solve a quadratic
equation – see Section 5.3 of Book 1) and show your
results in a Figure.

Note In all the Exercises x, y, etc. are represented in
the Figures as distances, so each stands for a number of
units ; but the size of the unit doesn’t matter, so it is
not shown.
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Chapter 3

Area and angle

3.1 What is area?

We talked about rectangles in Section 2.1 and used them
again in 2.2 in setting up the rectangular coordinates
(x, y) of a point in a plane. One thing we all know
about a rectangle is that it has an area: for example,
if we are laying tiles to cover a rectangular shape as in
Fig.7, we want to know how many will be needed – and
this number measures the area. If our tiles are 20 cm
square and we are covering a floor 3 m in one direction
(the x direction, say) and 2 m in the y direction, then
we shall need 3 × 5 tiles in each row and there will be
2 × 5 such rows; so we shall need 15 × 10 tiles and the
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area will be 150 units, the unit being ‘1 tile’. This is
clear from Fig.7(a).

If the lengths of the two sides are instead L1 m and L2

m we shall need L1 ×L2 × 25 tiles where L1 and L2 are
numbers which measure the two lengths in metres. If
we were using ‘bigtiles’, each being square with sides of
length 1 m, then 1 bigtile would cover exactly the same
area as 25 ordinary tiles; they would be equivalent in
area and we could say this in the equation

1 bigtile = 25 tiles, or 1 new unit = 25 old units.

Now we know already, from Section 1.1, that the mea-
sure of a quantity depends on the unit we are using: if
we take a new unit k times as big as the old unit, then
the number which measures the quantity will become k
times smaller. So in this example the area of the room
will be A = 150 tiles = (150/25) bigtiles, the 6 bigtiles

26



corresponding to the area in ‘square metres’ of the 3 m
× 2 m rectangle. This is shown in Fig.7(b): 6 bigtiles
just fit.

With the metre as the standard unit of length we see
that the unit of area is 1 m2. So if the unit of length is
multiplied by k, the measure of length will be divided
by k; but the unit of area will be multiplied by k2 and
the measure of area will be divided by k2. We usually
say that area has the “dimensions of length squared”
or, in symbols, [area] = L2 (read as “the dimensions of
area are el squared”). When we use symbols to stand
for quantities we must always be careful to get the units
right as soon as we use numbers to measure them!

The rectangle is a particular ‘shape’ with certain prop-
erties, like its area and the length of a side (i.e. the dis-
tance between two neighbouring corners). If we move
it to another position in space, such properties do not
change – they belong to the object. An important thing
about the metric axiom (2.2) is that it means all dis-
tances will be left unchanged, or invariant, when we
move an object without bending it or cutting it – an
operation which is called a transformation. From this
fact we can find the areas of other shapes. Two are spe-
cially important; the triangle 4, which has only three
sides, and the circle ©, which has one continuous side
(called its perimeter) at a fixed distance from its cen-
tre.
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The area of a triangle follows easily from that of a rect-
angle: for a diagonal line divides the rectangle into two
halves, each with the same area because each could be
transformed into the other (as in Fig.8) without change
of shape. To do this, think of the y-axis as a ‘hinge’ and
turn the shaded half of the rectangle over (like a door);
and then put the two halves together again, by sliding
them in the plane until you get the ‘equilateral triangle’
(two sides equal). The base of the triangle is twice the
bottom side of the rectangle; and its vertical height is
the same as that of the rectangle. But the area of the
triangle is still that of the original rectangle. So we get
the simple formula

Area of triangle = 1
2

base× vertical height. (3.1)

An interesting thing about this result is that it still holds
good even when the top, or vertex, of the triangle is
pushed over to one side as in Fig.9. This must be so
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because if you imagine each horizontal strip to be filled
with tiny squares (elements of area), slide each one side-
ways, and then count the elements in all strips, the to-
tal number cannot have changed. So both the triangles
shown in Fig.9 will have the same area, given by (3.1).

The area of a circle is not quite so easy to find, but
the problem was solved by Archimedes (another of the
ancient Greeks), who used a very clever method. He
noted that a circle could be filled, nearly but not quite,
by putting inside it a shape (called a polygon) with N
sides, as in Fig.10 for N=4, and that each side formed
the base of a triangle with its vertex at the centre. Then,
by making N bigger and bigger, he could find polygons
whose areas would come closer and closer to the area of
the circle.

For a circle of unit radius, r = 1, the first (very rough)
approximation was the area of the square, with A4 =
4 × (1

2
r2) = 2, as follows from Fig.10. But Archimedes

was then able to show that the polygon with 2N sides,
instead of N , had an area A2N given by the formula

A2N =
N

2

√√√√
2− 2

√
1−

(
2AN

N

)2

. (3.2)

Using this formula (and given that
√

2 ≈ 1.414214) you
can easily get the area A8 of the 8-sided polygon (shown,
in part, by the broken lines in Fig.10) in terms of A4: it
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will be

A8 = 2
√

(2− 2
√

(1− 12)) = 2
√

2 ≈ 2.828427.

– compared with the first approximation A4 = 2.

If you go on (you’ll need a calculator!) you will find
A16 ≈ 3.061468 and if you go on long enough you will
find something very close to 3.141593. This is a good
approximation to the number, always denoted by the
Greek letter π (‘pi’), which is the limit of a series (Book
1, Section 5.1): it is the area of a circle of radius r = 1.
If you want to go to a circle whose radius is measured by
r instead of 1, it’s enough to remember that [A]=L2 –
so that when a length is multiplied by r the area will be
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multiplied by r2. This gives us the important formula

Area of a circle of radius r = πr2 (π ≈ 3.141593),
(3.3)

which we’ll need right away in defining angle.

3.2 How to measure angles

How can we measure the ‘angle’ between two intersect-
ing straight lines when they are neither perpendicular
nor parallel – when they simply ‘point in different direc-
tions’. The slope m of a line is one such number, for it
fixes the direction of the line AB in Fig.5 relative to AC,
which is parallel to the x-axis. We say that AB ‘makes
an angle’ with AC and call m(= BC/AC) the tangent
of the angle. This ratio is obtained easily for any pair of
lines by dropping a perpendicular from a point on one
of them to the other; and it also follows easily that it
does not matter which line is taken first. Two other ra-
tios, BC/AB and AC/AB, also give a simple arithmetic
measure of the same angle: they are called, respectively,
the sine and the cosine of the angle. There is, however,
a single number which gives a more convenient measure
of the angle – ‘circular measure’, since it relates directly
to the circle. To get this we must think about combining
angles.

Just as two points define a linear displacement which
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brings the first into coincidence with the second; two
straight lines, with one point in common, define an an-
gular displacement, or a rotation, which brings the first
into coincidence with the second. The rotation angle
is given a sign, positive (for anti-clockwise rotation) or
negative (for clockwise) – for rotations in the two op-
posite senses are clearly different. Just as two linear
displacements are called equal if their initial and final
points can be put in coincidence (by sliding them about
in the plane), we call two angular displacements equal
if their initial and final lines can be brought into coin-
cidence. And just as two linear displacements can be
combined by making the end point of one the starting
point of the next, we can combine two angular displace-
ments by making the end line of one the starting line of
the next. These ideas will be clear on looking at Fig.11.
Angles are named by giving three letters: the first is the
end point of the initial line; the last is the end point
after rotation; and the middle letter is the point that
stays fixed. The sum of the angles XOP and XOQ is
the angle XOP′, obtained by taking OP as the starting
line for the second angle, POP′, which is made equal to
XOQ.

After saying what we mean by ‘combination’ and ‘equal-
ity’ of angles, we look for an ‘identity’ (in the algebra
of rotations) and the ‘inverse’ of any angle, ideas which
are old friends from Book 1. The ‘identity’ is now “don’t

32



do anything at all (or rotate the initial line through an
angle zero)”; and the ‘inverse’ of an angle is obtained
simply by changing the sense of the rotation – clock-
wise rotation followed by anti-clockwise rotation of the
same amount is equal to no rotation at all! If we write R
for a positive rotation and R−1 for its inverse (negative
rotation). this means

RR−1 = R−1R = I.

Next we must agree on how to measure angles. There is
a ‘practical’ method, based on the fact that rotation of
the line OP (a ‘vector’ pointing from O to P), through
a complete circle around the point O, defines a special
angle: let’s call it 1 ‘turn’. The ‘degree’ is a small angle,
such that 360 degrees = 1 turn; and the angle between
two lines in a plane can therefore be measured by a
number (of degrees) lying between 0 and 360. Angles,
unlike distances (which can be as big as you like), are
thus bounded – since we can’t tell the difference between
angles that differ only by 360 degrees (or any multiple
of 360). This doesn’t mean that angular displacement
is bounded: we all know that, in turning a screw, for
example, every turn (rotation through 360 degrees) is
important; and it can be repeated again and again to get
bigger and bigger rotation angles. It is only the angle
between two lines in a plane that is bounded: in the case
of a screw, rotation has an effect outside the plane and
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it is then useful to talk about rotations through angles
greater than 360 degrees.

A more fundamental way of measuring angles follows
from the equation (3.3) for the area of a circle. If we use
θ to denote the angle XOP in Fig.11 (angles are usually
named using Greek letters and θ is called ‘theta’), then
the ‘circular measure’ of θ is the ratio of two lengths:
θ = arc/radius, where ‘arc’ is the length of the part of
the circle between point P and the x axis. This is a pure
number, not depending on the unit of length, and gets as
close as we wish to tan θ and sin θ as the angle becomes
smaller and smaller. To find this number we write (3.3)
in another form. The area of the whole circle (A) is
the sum of the areas of a huge number of tiny triangles,
each one with a small area a ≈ 1

2
arc× radius: so we find

A = 1
2
(whole arc)× radius where ‘whole arc’ means the

sum of all the tiny arcs, one for each triangle, as we go
round the perimeter of the whole circle. The length of
this arc is the circumference of the circle. So what we
have shown is that A = 1

2
(Circumference × radius, and

from (3.3) this gives the final result

Circumference of a circle = 2× Area ÷ radius = 2πr.
(3.4)

Since the circumference is the ‘whole arc’, which is Θ×r
(where Θ denotes the whole angle turned through in
going all round the circle), we can write Θ = 2π radians.
Here, the radian is the ‘natural unit’ of angle and since,

34



in terms of ‘degrees’ 2π radians = 360 degrees, it follows
from (3.3), that

1 radian ≈ 57.3 degrees. (3.5)

Usually, however, it is better to use radian measure: for
example, two lines are perpendicular when the angle be-
tween them is π/2 and this does not depend on defining
the ‘degree’.

More on Euclid

Most of Euclid’s work was on plane figures (shapes such
as triangles and rectangles that lie in a plane). There’s
so much of it that it would fill a whole book, so we just
give one or two definitions and key results to start things
off:

• Two angles like A and B in Fig.12(a), whose sum
is π, are called complementary ; each is the com-
plement of the other – together they complete the
angle π. When the angles describe rotations of the
arrow, about the fixed point O, the rotation A fol-
lowed by B is the rotation A+B = π, which turns
the arrow round and makes it point the other way.

• When two straight lines cross, as in Fig.12(b), they
make two pairs of complementary angles A, B and
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A′, B′. If we make a half-turn of the whole pic-
ture, around the crossing point, A goes into A′

and B into B′, but the angle A is unchanged by
the operation: so A′ = A and similarly B′ = B
– ‘opposite’ angles are equal. So when two lines
cross they make two pairs of equal angles; and the
different angles (A and B) are complementary.

• When a straight line crosses two parallel lines, as
in Fig.12(c), it makes two other pairs of equal an-
gles A′ = A and B′ = B; for sliding the picture so
as to send A into A′ and B into B′ is another trans-
fomation (see Section 3.1) that does not change the
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angles. Such pairs of angles are called ‘alternate’.

• By adding another straight line to the last picture
(Fig.12(c)) we make a triangle (Fig.12(d)) with
three ‘internal’ angles, here called A, B, C. Now,
from the last two results, A′ (being opposite to the
angle alternate to A) is equal to A and similarly
C ′ = C. Also the sum of A′(= A), B, and C ′(= C)
is the angle π in Fig.12(a). It follows that the sum
of the angles inside any plane triangle is π radians
(i.e. 180 degrees or two right angles).

Euclid and his school proved a great number of other
results of this kind, each one following from those al-
ready obtained. All these theorems were numbered and
collected and can still be found in any textbook of ge-
ometry.

Note: The next Chapter contains difficult things, usu-
ally done only at university, but also much that you will
understand. Look at it just to see how many different
ideas come together. Then come back to it when you’re
ready – perhaps a year from now!

Exercises

1) Look at Figs.9,10 and then calculate the area of the 8-
sided polygon, part of which is shown by the broken lines
in Fig.10. Check that your result agrees with equation
(3.2) when you put N = 4. (The polygon holds 2N
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triangles, all with the same area. Find the base and the
vertical height of each of them, taking the circle to have
unit radius.)

2) Express all the angles in Fig.10 both in degrees and
in radians.
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Chapter 4

Rotations: bits and
pieces

One of the great things about mathematics is that it con-
tains so many ‘bits and pieces’ which, again and again,
can be put together like bricks, in building up new ideas
and theories. These small pieces are so useful that, once
understood, they are never forgotten. In talking about
angles and rotations we need to use vectors (Book 1,
Section 3.2); the laws of indices (Book 1, Section 4.2);
the exponential series (Book 1, Section 5.1); complex
numbers (Book 1, Section 5.2); and the idea of rotation
as an operator (as in Book 1, Section 6.1).

Let’s start with a vector pointing from the origin O to
any point P, as in Fig.13. In a rotation around O, any
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such vector is turned through some angle, let’s call it θ,
and, as in Book 1, Section 6.1, we can think of this oper-
ation as the result of applying a rotation operator Rθ.
There is a law of combination for two such operators:

Rθ′Rθ = Rθ+θ′ ,

(don’t forget we agreed in Section 6.1 that the one on
the right acts first) and for every operator Rθ there is an
inverse operator, denoted by R−1

θ , with the property

RθR−θ = R−θRθ = I,

where I is the Identity operator (rotation through angle
zero). These properties define a group (Book 1, Section
6.1) with an infinite number of elements – since θ can
take any value between 0 and 2π (rotation through θ+2π
not being counted as different from Rθ). We now want
to put all this into symbols.

In 2-space any point P is found from its coordinates
(x, y): to get there, starting from the origin (where
x = 0, y = 0), you take x steps in the ‘x-direction’ (i.e.
parallel to the x-axis) and y steps in the ‘y-direction’.
In Book 1, Section 3.2 there was only one axis and e was
used to mean 1 step along that axis; but now there are
two kinds of step (e1 and e2, say), so we write, for the
vector describing the displacement from O to P,

r = xe1 + ye2, (4.1)
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where e1, e2 are along the two directions and r is called
the ‘position vector’ of P. From Book 1, Section 3.2, it’s
clear that the order in which the steps are made doesn’t
matter: if x = 2 and y = 3 then r = e1+e1+e2+e2+e2 or,
just as well, r = e2 +e1 +e2 +e2 +e1 – because you arrive
at the same point in the end. The distance from O to P
is the length of OP, or the magnitude of the vector r, and
the coordinates x, y may be whole numbers or fractions,
positive or negative, or even irrational, as we know from
Book 1, Section 4.3. Now let’s think about rotating a
vector, turning it through an angle. A rotation of OP
(Fig.13) through an angle θ around the origin can be
described in symbols as

r → r′ = Rθr, (4.2)

where→ means “goes to” and r′ is the position vector of
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point P′, after OP has been sent into OP′. The ‘product’
of two rotations, R1 followed by R2 through angles θ1 and
θ2, respectively, is written

r → r′ = R2R1r = R3r (θ3 = θ1 + θ2). (4.3)

The fact that the product of two rotations is obtained by
adding their rotation angles, reminds us of the laws of
indices – where am× an = am+n – a result which is true
even when the indices m, n are not only whole numbers.
Let’s now look for a connection.

In Book 1, Section 5.1 we met a number defined as the
limit of a series (remember the shorthand used in Book
1, that 2! = 1 × 2, 3! = 1 × 2 × 3, and so on, n! being
called “factorial n”)

y = 1 + x +
x2

2!
+

x3

3!
+ ... = f(x), (4.4)

when the number of terms becomes infinite. This num-
ber depends on the value we give to x and is denoted
here by f(x) (read as a “function of x” – or, in short,
“eff of ex”) to mean only that for every value of x we
can find a related value of y: x is called the “indepen-
dent variable” (we can give it any value we like), but
y is the “dependent variable” whose value depends on
that of x. The branch of mathematics that deals with
functions is called Analysis, and we’ll say more about it
in other Books of the Series. Here it’s enough to think
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of a function as a rule – in this case the series (4.4) –
by which we can calculate a value of y, given the value
of x.

The function defined in (4.4) has amazing properties.
Let’s multiply two such series together, using two differ-
ent values of x (call them x = p in one series and x = q
in the other):

f(p)f(q) =

(
1 + p +

p2

2!
+ ...

) (
1 + q +

q2

2!
+ ...

)
= 1 + (p + q) +

(
p2

2!
+ pq +

q2

2!

)
+ ...

= 1 + (p + q) +
(p + q)2

2!
+ ... , (4.5)

– including terms only up to the ‘second degree’ (i.e.
those with not more than two variables multiplied to-
gether). The result seems to be just the same function
(4.4), but with the new variable x = p+q. And if you go
on, always putting together products of the same degree,
you’ll find the next terms are

(p+q)3/3! = (p3+3p2q+3pq2+q3)/3! (third degree)

and

(p+q)4/4! = (p4+4p3q+6p2q2+4pq3+q4)/4! (degree 4.)

43



As you can guess, if we take more terms we’re going to
get the result

f(p)f(q) = 1+(p+q)+
(p + q)2

2!
+

(p + q)3

3!
+... = f(p+q).

(4.6)
To get a proof of this result is much harder: you have to
look at all possible ways of getting products of the nth
degree (n factors at a time) and then show that what you
get can be put together in the form (p+ q)n/n!. So we’ll
just accept (4.6) as a basic property of the exponential
function, defined in (4.4) and often written as “exp x”.

From (4.6) we find, by putting p = q = x, that f(x)2 =
f(2x); and on doing the same again f(x)3 = f(x) ×
f(2x) = f(3x). In fact

f(x)n = f(nx). (4.7)

This second basic property lets us define the nth power
of a number even when n is not an integer ; it depends
only on the series (2.14) and holds good when n is any
kind of number (irrational or even complex). Even more
amazing, both (4.6) and (4.7) are true whatever the sym-
bols (x, p, q) may stand for – as long as they satisfy the
usual laws of combination, including qp = pq (so that
products can be re-arranged, as in getting the result
(4.6)).

In Book 1, Section 1.7, the (irrational) number obtained
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from (4.4) with x = 1 was denoted by e:

e = 1+1+
1

2
+

1

6
+

1

24
+ . . . = 2.718281828 . . . (4.8)

and this gives us a ‘natural’ base for defining all real
numbers. From (4.7), en = f(n) is true for any n – not
just for whole numbers but for any number. So changing
n to x gives

ex = 1 + x +
x2

2!
+

x3

3!
+ . . . , (4.9)

and the ‘laws of indices’ can now be written in general
form as

exey = ex+y, (ex)y = exy. (4.10)

We’re now ready to go back to rotations in space! We
know that rotations are combined according to (4.3) and
that every rotation Rθ is labelled by its rotation angle
θ, which is just a number. For some special values of
θ, we also know what Rθ does to a vector in 2-space.
For example, R2πr = r, but Rπr = −r because rotating a
vector through half a turn makes it point in the opposite
direction, which means giving it a negative sign. But
how can we describe a general rotation?

Any rotation can be made in small steps, for example
in steps of 1 degree at a time, so let’s think of Rθ as the
result of making n very small rotations through an angle
α: so θ = nα and what we mean is that Rθ = (Rα)n,
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where we use the ‘power’ notation to mean the product
RαRα...Rα with n factors. So n becomes a measure of
the rotation angle θ in units of α; and if Rθ is followed
by a rotation Rθ′ , with θ′ = mα, the result will be a
rotation through (m+n)α. Fig.14 gives a picture of the
rotations which carry the position vector of a point P0,
on the x-axis, into P1 (1 step), P2 (2 steps), and so on –
each step being through a very small angle α (magnified
here, so you can see it).

The rotation Rα sends the point P0, with position vector
r = re1 + 0e2 (the components being x = r and y = 0
when r points along the x-axis), into P1 with r′ = Rα =
x′e1 + y′e2. In general, the x- and y-components of any
rotated vector (call them x, y for any rotation angle θ)
are related to the sine and cosine of the angle turned
through – as we know from earlier in this Section. The
definitions are cos α = x/r and sin α = y/r and the
rotation leading to P1, with coordinates (x1, y1), thus
gives

r1 = Rαr = x1e1 + y1e2 = r cos α e1 + r sin α e2. (4.11)

After repeating the operation n times we reach the vec-
tor ending on Pn: in short

rn = (Rα)nr = xne1 + yne2 = r cos(nα)e1 + r sin(nα)e2.
(4.12)

Of course, we know how to get the sine and cosine from
the picture (by measuring the sides of a triangle) and
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we know their values for certain special angles like θ =
2π, or π, or π/2, or even π/4; but what we really need
is a way of calculating them for any angle θ (= nα).

To do this we start from the series (4.9), remembering
that (4.10) gives us a way of finding its nth power just by
writing nx in place of x (writing y = n because it stands
for any number). And since x is also any number let’s
experiment – putting x = iα, where i is the ‘imaginary
unit’ first introduced in Book 1, Section 5.2. The result
is

eiα = 1 + iα− α2

2!
− i

α3

3!
+ ... (4.13)

where we’re using the fact that i2 = −1, i3 = i×i2 = −i,
and so on. On collecting together the real terms (no i
factors) we discover a new series:

Cα = 1− α2

2!
+

α4

4!
− ... (4.14)

and, on doing the same with the imaginary terms, find
another series

Sα = α− α3

3!
+

α5

5!
− ... . (4.15)

Putting the two series together shows that

eiα = Cα + iSα (4.16)
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and from (4.10) there’s a similar result when α is re-
placed by the large angle nα; so

einα = Cnα + iSnα, (4.17)

where Cnα and Snα are just like (4.14) and (4.15), but
with nα instead of α.

Now look back at where we started: Equation (4.11)
gives us the coordinates of P1 after rotating OP0 through
a very small angle α and the (geometrically defined)
values of sin α and cos α are, neglecting powers beyond
α2, sin α ≈ α and cos α ≈ 1 − 1

2
α2 – and these are the

leading terms in the series (4.14) and (4.15)! For small
angles, Cα → cos α, Sα → sin α. From these starting
values we continue by (i) making more rotations, in steps
of α, getting (4.12) after n steps; and (ii) multiplying
eiα by the same factor, in every step, to get einα after n
steps. The two things go hand in hand. We take a bold
step and say that

cos(nα) = Cnα, sin(nα) = Snα, (4.18)

are the algebraic expressions for the cosine and sine of
any angle nα.

So we write, for any angle θ, the general results

cos θ = 1− θ2

2!
+

θ4

4!
− ... , sin θ = θ − θ3

3!
+

θ5

5!
− ... .

(4.19)
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And, from (4.17) with nα = θ,

eiθ = exp iθ = cos(θ) + i sin(θ) (4.20)

The above results lead to many others. Take an exam-
ple: for any θ, we may square both sides of equation
(4.20) to obtain

e2iθ = (cos θ+i sin θ)2 = (cos θ)2−(sin θ)2+2i sin θ cos θ.

But we also know that

e2iθ = cos 2θ + i sin 2θ

and (from Book 1, Section 5.2) that two complex num-
bers are equal only when their real and imaginary parts
are separately equal; so comparing the last two equa-
tions shows that

cos(2θ) = (cos θ)2 − (sin θ)2, sin(2θ) = 2 sin θ cos θ
(4.21)

– knowing the sine and cosine of any angle you can get
them very easily for twice the angle. For example, we
know that sin(π/4) = cos(π/4) = 1

2

√
2 (from the right-

angled triangle with sides of length 1, 1,
√

2); so dou-
bling the angle gives sin(π/2) = 1, cos(π/2) = 0; dou-
bling it again gives sin(π) = 0, cos(π) = −1; and yet
again gives sin(2π) = 1, cos(2π) = 0. The last result

49



shows that the angle 2π (or 360 degrees) looks no differ-
ent from zero; and that every rotation through 2π gives
us nothing new – the dependence of sine and cosine on
the angle is said to be periodic, they take the same
values whenever the angle increases by 2π, called the
period. In other words

e2πi = 1 (4.22)

– a connection between two irrational numbers (e, π)
and the imaginary unit (i), almost beyond belief! This
is one of the most remarkable results in the whole of
Mathematics.

The sine and cosine of the sum of any two angles follows
in the same way as for twice the angle. Taking

exp i(θ1 + θ2) = exp iθ1 × exp iθ2,

using (4.20) and expanding the right-hand side, we find
(try it yourself!)

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2,

sin(θ1 + θ2) = sin θ1 cos θ2 + cos θ1 sin θ2. (4.23)

That’s all you need to know about angles – the rest you
can do for yourself! A long time ago, in school, when
all of geometry was done the way Euclid did it, we had
to learn all these results (and many more) by heart –
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chanting them over and over again – and all because the
Pythagoreans threw away their great discovery of alge-
braic geometry, leaving it for the French mathematician
René Descartes (1596-1650) to re-discover more than
a thousand years later! Now you can get such results
whenever you need them, remembering only the laws of
indices and doing some simple algebra.

Exercises

1) Get the results labelled “(third degree)” and “(fourth
degree)”, just after equation (4.5), by multiplying to-
gether the results you already know.

2) Obtain the results (4.13) to (4.20) by starting from
(4.9) and working through all the details.

3) Starting from (4.23), find expressions for cos(θ1−θ2),
sin(θ1 − θ2), cos 2θ, sin 2θ, cos 3θ, sin 3θ.
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Chapter 5

Three-dimensional
space

5.1 Planes and boxes in 3-space

– coordinates

As we all know, from birth, the real ‘physical’ space we
live in is not a 2-space, or plane, in which a point is
specified by giving two numbers to define its position.
There are points ‘above’ and ‘below’ any plane; and to
define their positions we’ll need a third number – to tell
us how far up or how far down. Again, as in Section
1.2, we’ll refer a point to a set of perpendicular axes,
meeting at a point O – the origin – but now there will
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be three axes instead of two. Up to now, we’ve been
talking about plane geometry; but now we turn to 3-
space and to solid geometry. The basic ideas, however,
are not much different: we start from an axiom, just
like that we used in 2-space, referring to the shortest
distance between points; then we set up a few theorems
from which all of solid geometry can be derived by purely
algebraic reasoning. Of course, we won’t do all of it –
just enough to make us feel sure that it can be done.

According to the first Axiom (Section 1.2) a straight line
is the unique shortest path between two points. And
from the definition of a plane (Section 1.2) it follows
that if two planes intersect, then they cut each other
in a straight line – for if any two points A and B are
common to both planes then there is a unique straight
line AB and all the points on AB lie at the same time in
both planes (i.e. AB, which may be as long as we wish,
is the line in which the planes intersect).

From this conclusion we can go to a first theorem:

Theorem. If a straight line is perpendicular
to two others, which it meets at a common
point, then it is perpendicular to all others
in the same plane and passing through the
same point. It is then perpendicular to the
plane and is called a normal.

The proof follows from Fig.15, where OP is taken per-
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pendicular to both OA and OB and the angle OAB is
taken to be a right angle. Let OC be any other straight
line, through O, in the plane OAB. We must prove that
COP is also a right angle.

This will be so only when PC2 = OP 2 + OC2 and this
follows in two steps: First,

PB2 = OP 2 +OB2 = OP 2 +OA2 +AB2 = AP 2 +AB2,

and therefore PAB is also a right angle. Then, second,
we have

PC2 = PA2 +AC2 = OA2 +OP 2 +AC2 = OC2 +OP 2.

This proves the theorem.

Two other simple results follow:

54



• The perpendicular from a point to a plane is the
shortest path from the point to any point in the
plane.

• If a straight line is perpendicular to two others,
which meet it at some point, then the two others
lie in a plane.

These are ‘corollaries’ to the theorem, the second one
being the converse of the theorem – saying it the other
way round.

Cartesian coordinates in 3-space

We’re now ready to set up the (rectangular) Cartesian
coordinates of any point P in 3-space. First we take a
plane OXY and the given point P, outside the plane as
in Fig.16. If Q is the foot of the perpendicular from P
onto the plane, then PQ is the unique shortest path from
the point to the plane; let’s call its length z. And point
Q, lying in the plane, is uniquely defined (see Section
2.2) by giving its 2-space coordinates (x and y) relative
to the axes OX and OY. The position of P is then com-
pletely defined by giving the three numbers (x, y, z), as
in Fig.16. In the case of z, however, we must give the
number a sign (±) to show whether P is above the plane
or below : we agree that z will be counted positive (it
will be on the ‘positive side’ of the plane) when a rota-
tion carrying OX into OY would move a ‘right-handed
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screw’ (with its sharp end underneath point O) upwards,
towards P.

Now the three axes OX, OY, and QP have not been
freely chosen, for the third one must pass through the
point P. We’d like to be able to talk about all points in
space, not only those on one special line QP; we want
one set of three perpendicular axes (OX, OY, OZ), all
starting from a common origin (O), which can be used
to describe all points. To do this, we need one more
theorem

Theorem. Two straight lines, both perpen-
dicular to a given plane, are parallel to each
other.

The proof follows from Fig.17, where the two lines BA
and DC are taken perpendicular to the plane BDE; and
E is chosen so that DE is perpendicular to DB (i.e. BDE
is a right angle).

We first show that EDA is also a right angle; and that
CD, DA and DB must therefore lie in the same plane
(by the previous theorem). This follows at once because
AE2 = AB2+BE2 = AB2+BD2+DE2 = AD2+DE2,
and so EDA is a right angle and the lines DB, DA, BA,
and DC all lie in the same plane. Moreover, BA and
DC, besides lying in the same plane, are perpendicular
to the plane BDE; so they are perpendicular to the line
BD which intersects them. Thus, by the Definition at
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the beginning of Section 2.1, BA and DC are parallel –
proving the theorem.

Again, the theorem has a converse:

Converse. If two straight lines are parallel
and one is perpendicular to a plane, then so
is the other.

A whole chain of results follows from the theorem and
its converse. We’ll just say what they are when we need
them (no proofs!), starting with a definition:

Definition. If two planes are perpendicular
to the same straight line, then they are par-
allel planes.

It then follows that a perpendicular from any point on
one plane, connecting it with a point on the other, will
have the same length no matter what point we choose –
this being the shortest distance between the two planes.
If two pairs of points, A, B, and C, D, are connected
in this way, then they lie at the corners of a rectangle,
whose opposite sides have equal length.
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5.2 Describing simple objects in

3-space

We can now go ahead exactly as we did in 2-space. But
now we take any point O as origin and draw rectan-
gular axes OX, OY, and OZ, as in Fig.18, each being
perpendicular to the others. Any point P, anywhere in
3-space, can then be given rectangular (Cartesian) co-
ordinates, x, y, z, which measure the shortest distances
to the planes OYZ, OZX, and OXY, respectively. These
distances are also the lengths of the projections of the
line OP, shown in the Figure, along the three axes, OX,
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OY, OZ: the projection shown, OA, is the line from the
origin O to the foot (A) of the perpendicular from P
to the x-axis and the lengths of OA and QB are equal
– being opposite sides of OAQB, which is a rectangle
(as follows from the Theorems above, both lines being
perpendicular to the plane OYZ).

The geometry of 2-space, in Section 2.2, was based on
equation (2.1), which gave us the distance between any
two points, P and P′; and on (2.2), which holds when
they are close together. In 3-space, things look just the
same, except that there are now three coordinates: the
distance (r, say) from the origin O to any point P is
given by

r2 = x2 + y2 + z2 (5.1)

while for two infinitely close points the separation (dr)
follows from

dr2 = dx2 + dy2 + dz2 (5.2)

– dx, dy, dz being the differentials, such that a neigh-
bouring point P′ has coordinates x′ = x + dx, y′ =
y + dy, z′ = z + dz

Again (5.2) is the ‘fundamental metric form’ – but now
in real three-dimensional space – and because it has
sum-of-squares form at any point (and, according to
(5.1), in any region, however large) the space is Eu-
clidean, with all the properties first discovered by Eu-
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clid. Any plane is called a 2-dimensional subspace of 3-
space and any straight line is a 1-dimensional subspace.
Just as plane geometry, in the algebraic approach fol-
lowed in Section 2.2, comes out of equations (2.1) and
(2.2), the whole of solid geometry comes out of (5.1) and
(5.2).

Again, in 3-space, the simplest geometrical object is a
straight line; but now every point on the line will have
three coordinates. In 2-space the coordinates x, y of a
point on a straight line were related so the y = mx + c,
where the numbers m and c fix the slope of the line and
where it crosses the y-axis; we took x as the ‘indepen-
dent variable’, which then determines y (the ‘dependent
variable’). But in 3-space things are a bit more com-
plicated as the line doesn’t have to lie in any one of
the coordinate planes – it can point any way we please.
The same is true for the next simplest object, the plane,
which may have any orientation we please. We’ll look
at these things again in the next Section, after we’ve
found a simpler way of dealing with them – namely,
‘vector algebra’. But for the moment it’s enough to note
that lines and planes are described by linear equations,
involving only first powers of the variables x, y, z, while
circles (for example) require equations involving higher
powers or products. The simplest examples are the co-
ordinate planes themselves: thus z = 0 (constant) de-
scribes the plane containing the axes OX and OY, and
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similarly z = p (constant) defines a plane parallel to
OXY and at a perpendicular distance p from the origin.
In both cases any point in the plane is determined by
giving values, any we wish, of the other variables x, y.

The simplest solid object (after the cube, which has six
plane faces) is the sphere, corresponding to the circle
in 2-space. It has a single curved surface and the co-
ordinates of any point on the surface are related by an
equation of the second degree. The distance of a point
P(x, y, z) from the origin is given by

r2 = x2 + y2 + z2 (5.3)

and this distance (r) is the radius of the sphere, the
same for all points on the surface. Thus (5.3) is the
equation for the surface of a sphere centred on the origin.
If you move the sphere (or the line or the plane) the
equation will be more complicated. This is because our
descriptions are based on choosing a set of axes that
meet at the centre of the sphere and then using three
distances (coordinates) to define every point; the set of
axes is called a reference frame. If we decide to change
the reference frame, so that the origin is no longer at the
centre, then all the coordinates will have to be changed.

On the other hand, the objects we meet in 3-space have
certain measurable properties (like length and area) which
‘belong’ to the object and do not depend in any way on
how we choose the reference frame: as already noted
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(Chapter 3) they are invariants. We’d like to keep our
equations as simple and as close as possible to what
we’re trying to describe: a line, for example, is a vector
and could be denoted by a single symbol – instead of
a set of numbers that will change whenever we change
the reference frame. We’ll see how to do this in the next
Section.

5.3 Using vectors in 3-space

In ordinary algebraic number theory (Book 1, Chapter
4) we represented numbers by points on a straight line,
or with the displacements which lead from an origin to
these points. The displacements are in fact vectors
in a 1-space, each being a numerical multiple of a unit
‘step’ which we called e; and any 1-vector a is written
as a = ae, where a is just a number saying ‘how many’
steps we take in the direction of e. Of course, if a is an
integer, the displacement will lead to a point labelled by
that integer; but we know from Book 1 that this picture
can be extended to the case where a is any real number
and a is the vector leading to its associated point in the
pictorial representation. The rules for combining vectors
in 1-space are known from Book 1: we get the sum of
two displacements, a and b, by making them one after
the other (the end point of the first being the starting
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point for the second) and it doesn’t matter which way
round we take them. Thus

a + b = b + a, (5.4)

and if there are three vectors it doesn’t matter how we
combine them,

(a + b) + c = a + (b + c). (5.5)

We can also multiply a vector by any real number, as in
writing a as a number a of units e: a = ae. Let’s try to
do the same things in 3-space. There will now be three
different kinds of unit step – along the x-axis, the y-axis,
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and the z-axis – which we’ll call e1, e2, e3, respectively.
They will be the basis vectors of our algebra and we
take them to be of unit length (being ‘unit steps’) A
vector pointing from the origin O to point P(x, y, z) (i.e.
with Cartesian coordinates x, y, z) will be denoted by r
and written

r = xe1 + ye2 + ze3. (5.6)

This is really just a rule for getting from O to P: If the
coordinates are integers e.g. x=3, y=2, z=6, this reads
“take 3 steps of type e1, 2 of type e2 and 6 of type e3 –
and you’ll be there!” And the remarkable fact is that,
even although the terms in (5.6) are in different direc-
tions, the order in which we put them together doesn’t
make any difference: you can take 2 steps parallel to
the z-axis (type e3), then 2 steps parallel to the y-axis
(type e2), 3 more steps of type e1, and finally 4 steps
of type e3 – and you’ll get to the same point. This is
easy to see from Fig.19, remembering that (because the
axes are perpendicular) space is being ‘marked out’ in
rectangles, whose opposite sides are equal. In fact, the
rules (5.4) and (5.5) apply generally for vector addition.

An important thing to note is that in combining the
terms in (5.6) the vectors must be allowed to ‘float’, as
long as they stay parallel to the axes: they are called
‘free vectors’ and are not tied to any special point in
space. On the other hand, the position vector r is de-
fined as a vector leading from the origin O to a particular
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point P: it is a ‘bound vector’.

The numbers x, y, z in (5.6), besides being coordinates of
the point P, are also components of its position vector.
Any vector may be expressed in a similar form –

a = a1e1 + a2e2 + a3e3

b = b1e1 + b2e2 + b3e3,

etc. and addition of vectors leads to addition of corre-
sponding components. Thus, re-arranging the terms in
the sum,

a + b = (a1 + b1)e1 + (a2 + b2)e2 + (a3 + b3)e3. (5.7)

Similarly, multiplication of a vector by any real number
c is expressed in component form by

ca = ca1e1 + ca2e2 + ca3e3. (5.8)

Finally, note that the vector algebra of Euclidean 3-
space is very similar to the ordinary algebra of real
numbers (e.g. Book 1, Chapter 3). There is a ‘unit
under addition’ which can be added to any vector with-
out changing it, namely 0 = 0e1 + 0e2 + 0e3; and ev-
ery vector a has an ‘inverse under addition’, denoted by
−a = −a1e1 − a2e2 − a3e3, such that −a + a = 0.
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5.4 Scalar and vector products

From two vectors, a, b, it’s useful to define special kinds
of ‘product’, depending on their lengths (a, b) and the
angle between them (θ). (The length of a vector a is
often written as a = |a| and called the modulus of a.)

Definition. The scalar product, written a ·
b, is defined by a · b = ab cos θ.

Definition. The vector product, written
a× b, is defined by a× b = ab sin θ c,

where c is a new unit vector, normal (i.e.
perpendicular) to the plane of a, b and point-
ing so that rotating a towards b would send
a right-handed screw in the direction of c.

The ‘scalar’ product is just a number (in Physics a ‘scalar’
is a quantity not associated with any particular direc-
tion); but the vector product is connected with the area
of the piece of surface defined by the two vectors – and
c points ‘up’ from the surface, so as to show which is
its ‘top’ side (as when we first set up the z-axis). Both
products have the usual ‘distributive’ property, that is

(a + b) · c = a · c + b · c, (a + b)× c = a× c + b× c,

but, from its definition, the vector product changes sign
if the order of the vectors is reversed (b× a = −a× b) –
so whatever we do we must keep them in the right order.
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The unit vectors e1, e2, e3 each have unit modulus, |e1| =
|e2| = |e3| = 1; and each is perpendicular to the other
two, e1 ·e2 = e1 ·e3 = e2 ·e3 = 0. It follows that the scalar
product between any pair of vectors a, b is, in terms of
their components,

a · b = (a1e1 + a2e2 + a3e3) · (b1e1 + b2e2 + b3e3)

= a1b1e1 · e1 + . . . + a1b2e1 · e2 + . . . ,

where the dots mean ‘similar terms’; and from the prop-
erties of the unit vectors (above) this becomes

a · b = a1b1 + a2b2 + a3b3. (5.9)

When b = a we get a ·a = a2 = a2
1 +a2

2 +a2
3 (the original

sum-of-squares form for a length); and for the position
vector r of any point P we find

OP = r =
√

x2 + y2 + z2. (5.10)

Similarly, for two vectors r, r′, the scalar product is

r · r′ = rr′ cos θ = xx′ + yy′ + zz′

and this tells us how to find the angle between any two
vectors. Remember that x, y, z are projections of r on
the three coordinate axes, so x/r = cos α (α being the
angle between r and the x-axis); and similarly for the
second vector, x′/r′ = cos α′. The cosines of the angles
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between a vector and the three axes are usually called
the direction cosines of the vector and are denoted by
l,m, n. With this notation the equation above can be
re-written as

cos θ = ll′ + mm′ + nn′ (5.11)

– a simple way of getting the angle θ, which applies for
any two vectors in 3-space.

5.5 Some examples

To end this chapter it’s useful to look at a few exam-
ples of how you can describe points, lines, planes, and
simple 3-dimensional shapes in vector language. By us-
ing vectors you can often get the results you need much
more easily than by drawing complicated diagrams and
thinking of all the ‘special cases’ that can arise.

• Angles in a triangle In Section 1.2 we took the
theorem of Pythagoras, for a right-angled trian-
gle as the ‘metric axiom’. There are many the-
orems concerned with triangles that we haven’t
even mentioned; and many of them refer to a gen-
eral triangle, with no special angles. Let’s take
such a triangle, with vertices A,B,C, using the
same letters to denote the corresponding angles
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A, B, C, and the small letters a, b, c to denote the
lengths of the sides opposite to angles A, B, C. We
can also use the special symbols a, b, c to mean
the vectors pointing along the sides, following one
another in the positive (anti-clockwise) direction.
(Before going on, you should make a careful draw-
ing of the triangle ABC, labelling the sides and
angles. Then you’ll have the picture in your head.)

There are two basic ‘laws’ relating the sines and
cosines of the angles. The first is very easy to get:
if you drop a perpendicular from vertex C onto the
line through A and B, calling its length h, then
sin A = h/b, sin B = h/a; and so h = b sin A =
a sin B. On dividing by ab we get (sin A/a) =
(sin B/b). Taking vertex A next, you find a similar
result; and on putting them together you find

sin A

a
=

sin B

b
=

sin C

c
. (5.12)

This is the ‘Law of Sines’ for any plane triangle.

Now note that the sum of the vectors a, b, c (dis-
placements following each other round the trian-
gle and bringing you back to the starting point)
is zero: a + b + c = 0. So a = −(b + c) and the
squared length of a is

a2 = a · a = (b + c) · (a + c)

= a · a + b · b + 2a · b = b2 + c2 + 2b · c.
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From the definition of the scalar product in Section
5.2, b · c = bc cos θ when both vectors point away
from the point of intersection: but that means
turning c round, making it −c. The result you get,
along with two others like it (obtained by taking
vertex B in place of A, and then vertex C) give us
the ‘Law of Cosines’:

a2 = b2 + c2 − 2bc cos A

b2 = c2 + a2 − 2ca cos B (5.13)

c2 = a2 + b2 − 2ca cos C.

• Vector equation of a straight line Suppose we
want the line to pass through a point A, with po-
sition vector a, and to be parallel to a given vector
b – which can be of unit length (b2 = b · b = 1).
Then a general point on the line, P, with position
vector r, will be given by

r = a + sb (5.14)

where s is any variable number – and that’s the
equation we need! If instead we want the equation
for a line passing through two points, A and B
(position vectors a, b), then we simply replace b in
the last equation by the vector b− a, which points
from A to B: the result is

r = a + s(b− a).
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• Vector equation of a plane Suppose ON is a
normal to the plane, drawn from the origin O to
the foot of the perpendicular, N; and let n be a unit
vector in the direction ON, so ~ON = pn where p is
the perpendicular distance from O to the plane. If
r is the position vector of P, any other point in the
plane, then its projection (Section 5.2) on the line
ON must have the same value p. In other words,

r · n = p (5.15)

will be the equation defining a plane, with unit
normal n, at perpendicular distance p from the
origin.

• Distance of a point from a plane The perpen-
dicular distance from the origin to a point P in
the plane, given by (5.15), is p = r · n. That from
the origin to any other point, P′ with position vec-
tor r′, will be p′ = r′ · n – where we’re thinking of
point P′ as being in some parallel plane (which will
have the same normal n). The required distance
is therefore

d = p′ − p = r′ · n− p

and this will be positive when P′ is above the given
plane, going out from the origin in the direction n.
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• Intersection of two planes The angle θ between
two planes means the angle between their normals;
so it follows from

cos θ = n · n′,

n, n′ being the two unit normals. If θ is zero the
planes will be parallel; but otherwise they will in-
tersect – somewhere, but where? A point (r) which
lies on both planes must satisfy both equations,
r · n = p, r · n′ = p′. It will then lie on the line of
intersection; but if we multiply the two equations
by any two numbers c and c′ and add the results
we’ll get

r · (cn− c′n′) = cp− c′p′.

And this is the equation of a plane with its nor-
mal in the direction cn− c′n′: it describes a plane
through the line of intersection of the two given
planes – which one depending on the values we
give to c and c′.

Now a vector dn + d′n′ (the numbers d, d′ to be
chosen), starting from the origin, will contain the
normals (n, n′) to both planes and will therefore
cut the line of intersection: we take it as the vec-
tor a in equation(5.14), choosing d and d′ so that
the point will lie on both planes. Then we need
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only the direction, the unit vector b in (5.14), to
fix the line. And since the line of intersection is
perpendicular to both normals we can take b as
the vector product n × n′ defined in Section 5.4.
Putting things together, the equation of the line
of intersection is

r = dn + d′n′ + sn× n′, (5.16)

where the value of s changes as you run along the
line.

• Equation of a sphere We’ve already met the
equation for a sphere centred on the origin, in Sec-
tion 5.2, in terms of Cartesian coordinates. Let’s
now look at one centred on the point C (position
vector c), with radius R. The distance from C to
the surface is the length of the vector r−c and the
condition for point r to lie on the surface is thus
|r − c|2 = R2. Thus, expanding,

r2 − 2r · c + (c2 −R2) = 0 (5.17)

and this is the equation of the sphere centred on
point c.

• Intersection of a straight line and a sphere Sup-
pose the line is given by (5.14) and the sphere by
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(5.17): the point r must satisfy both these condi-
tions. If we put the first in the second we get

(a− sb) · (a− sb)− 2(a− sb) · c + (c2 −R2) = 0.

This contains the first and second powers of the
variable number s and will therefore be a quadratic
equation (Book 1, Section 5.3), which can be writ-
ten as

As2 + Bs + C = 0,

where

A = b2 = 1, B = 2b·(a−c), C = a2+c2−R2−2a·c.

There will be two roots, both real numbers, when
B2 > 4AC; and these values of s fix the two points
where the straight line meets the surface. If it hap-
pens that B2 and 4AC are exactly equal, then the
two points become one and the line just touches
the surface in a single point. The line is then a
tangent to the sphere.

Exercises

1) Find a unit vector perpendicular to each of the vectors
v1 = 2e1− e2 + e3 and v2 = 3e1 +4e2− e3. Calculate the
angle between v1 and v2.

2) Find two vectors which make equal angles with e1,
are perpendicular to each other, and are perpendicular
to e1 + e2 + e3.
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3) What is the vector equation of a straight line through
the points e1 − 2e2 + e3 and 3e3 − 2e2? And where does
this line meet the plane which contains the origin and
the points 4e2 and 2e1 + e2?

4) Show that the line joining the mid points of two sides
of a triangle is parallel to the third side and is of half its
length.

5) Show that the three points whose position vectors are
a, b, and 3a− 2b lie on the same straight line.

6) Find the equation of the straight line passing through
the point with position vector d and making equal angles
with the vectors a, b, c.

7) Find the equation of the plane through the point 2e1+
3e2− e3 which is perpendicular to the vector 3e1−4e2 +
7e3.

8) Show that the points e1− e2 + 3e3 and 3(e1 + e2 + e3)
are each the same distance from the plane

r · (5e1 + 2e2 − 7e3) + 9 = 0,

but are on opposite sides of it.
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Chapter 6

Area and volume:
invariance

6.1 Invariance of lengths and an-

gles

At the end of Section 5.2 we noted that the objects we
meet in 3-space have properties ‘of their own’ which
don’t change if we move them around from one part
of space to another – as long as we don’t bend them
or twist them or change their ‘natural’ shapes. The ob-
jects may be, for example, rods or sticks (with a length of
their own; or plates (with an area); or bricks or buckets
(with a volume). All such properties are invariant under
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the transformations that simply move an object from
one place to another. And in the last Section we laid the
foundations for describing invariance mathematically, by
using single symbols (vectors) to stand for elements of
space: the separation of two points in an object, for ex-
ample, is described by a vector d = d1e1 + d2e2 + d3e3,
say, whose length does not change when we move the
object. In fact, such transformations have the funda-
mental property of leaving invariant all distances and
angles – which define the shape of the object. This was
the property used by the Greeks in their development of
plane geometry – for example in comparing two trian-
gles to see if they were exactly alike, meaning one could
be placed on top of the other with all sides and angles
matching. They used pictures, but here we’re using al-
gebraic methods and working in three dimensions (solid
geometry) rather than two; and it’s here that vectors
are especially useful.

Let the position vectors of points P and Q, relative to
an origin O and a set of unit vectors e1, e2, e3, be

p = p1e1 + p2e2 + p3e3 q = q2e1 + q2e2 + q2e3,

where (so as not to be confused) we use p1, p2, p3 for the
components of p instead of x, y, z. The vector pointing
from P to Q (often written ~PQ) is the difference

~PQ = dPQ = q−p = (q1−p1)e1+(q2−p2)e2+(q3−p3)e3.
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The simplest transformation we can make is a transla-
tion, in which every point P is moved into its image,
P′, with position vector p′ = p + t, where t is a constant
vector. It is clear from Fig.20 that the vector from P′ to
Q′ is just the same as that from P to Q, before moving
the object: this idea can be expressed in the equation

dP ′Q′ = q′− p′ = (q + t)− (p + t) = q− p = dPQ. (6.1)

The vector separation of two points is invariant under
the translation.

Let’s think next of rotating the object into some new
position: this is more difficult because an image point P′

now has a position vector p′ related to p in a complicated
way. But we can study a simple case – rotating the
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object around one axis, the z-axis with unit vector e3.
A rotation changes elements of space, not numbers, so
we must ask what happens to the vectors e1, e2, e3; and
Fig.21 shows that a rotation through angle θ around e3

(which points up out of the page) has the following effect
–

e1 → e′1 = cos θe1 + sin θe2,

e2 → e′2 = − sin θe1 + cos θe2,

e3 → e′3 = e3, (6.2)

where each unit vector turns into its image under the
rotation, only e3 (along the z-axis) staying as it was.

Now a point P, with position vector p = p1e1+p2e2+p3e3,
is carried into P′, related in exactly the same way to the
new unit vectors resulting from the rotation – nothing
else has changed – and these are given in (6.2). The
position vector of the image P′ is thus

p′ = p1(cos θe1 + sin θe2) + p2(− sin θe1 + cos θe2) + p3e3,

when expressed in terms of the unit vectors before the
rotation took place. This can be re-arranged to give

p′ = p′1e1 + p′2e2 + p′3e3,

where

p′1 = cos θp1 − sin θp2,

p′2 = sin θp1 + cos θp2,

p′3 = p3. (6.3)
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The new vector p′ is clearly very different from p: but
this is no surprise – what we are looking for is the in-
variance of lengths and angles. We’ll just show that the
length of the line OP is preserved in the rotation; then
you can do the same for the angle between OP and OQ.

All we have to do is confirm that p′1
2 + p′2

2 + p′3
2 (the

square of the length OP′) is the same as before the ro-
tation. The three terms are, from (6.3),

p′1
2

= (cos θ)2p2
1 + (sin θ)2p2

2 − 2(cos θ sin θ)p1p2,

p′2
2

= (sin θ)2p2
1 + (cos θ)2p2

2 + 2(cos θ sin θ)p1p2,

p′3
2

= p2
3,

and on adding these together, remembering that (cos θ)2+
(sin θ)2 = 1 for any angle θ, we get the expected result

p′1
2
+ p′2

2
+ p′3

2
= p1

2 + p2
2 + p3

2. (6.4)

The length of any vector is thus unchanged by rotation
of the object.

After showing that the angles between any two vectors
are also invariant, it follows that a transformation of
this particular form (rotation around the z-axis) leaves
unchanged the shape of an object, its surface area and
its volume.

We must now think about area and volume in a bit more
detail, but first let’s note that what we’ve said about
rotation around one special axis is true for all kinds
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of rotation. This is easy because, as we’ve just seen,
an object is defined with reference to three unit vectors
and its image (after rotation) is defined the same way in
terms of the images of the unit vectors: so it’s enough
to know how e1, e2, e3 are transformed. We also know
that a rotated unit vector, pointing in any direction,
can be found from the corresponding direction cosines
(introduced just before (5.11)). If we use l1, m1, n1 to
fix the image e′1 in terms of the original basis – and so
on, we get as the most general transformation,

e1 → e′1 = l1e1 + m1e2 + n1e3,

e2 → e′2 = l2e1 + m2e2 + n2e3,

e3 → e′3 = l3e1 + m3e2 + n3e3. (6.5)

These vectors will keep their original unit lengths pro-
vided

e1 · e1 = l21 + m2
1 + n2

1 = 1, etc. (6.6)

and will stay perpendicular to each other (cos θ = 0),
provided

e1 · e2 = l1l2 + m1m2 + n1n2 = 0, etc. (6.7)

according to (5.11). These are the general conditions
that any rotation must satisfy in order that the image
of an object will look exactly like the object before ro-
tation. When all distances and angles are conserved in
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this way, the object and its image are said to be con-
gruent. In fact, almost the whole of Euclid’s geometry
was based on the idea of congruence.

6.2 Area and volume

Starting from the idea of length, as the distance between
the ends of a measuring rod, we have defined the sur-
face area of a plane rectangular object (e.g. a plate) in
Chapter 3: this quantity, a product of two lengths, was
said to have “dimension L2” and was measured by count-
ing the number of ‘units of area’ (e.g. tiles) needed to
cover it. In going from 2 to 3 dimensions similar ideas
are used. The simplest definition of the volume of a
box, whose sides are rectangles, is volume = product of
the lengths of the 3 edges, a quantity with dimension
L3. The volume is measured by counting the number
of ‘units of volume’ (e.g. bricks) needed to fill it. (See
Book 1, Chapter 2, where we used this idea in setting up
the laws for multiplying numbers: the number of bricks
in a wall (Fig.7) was a product of three numbers – the
numbers in the three directions, for length, thickness
and height.)

To summarize the basic ideas, using vector language,

• Length (defined by one vector a) = a = |a|
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• Area (defined by two vectors, a, b) = ab

• Volume (defined by three vectors, a, b, c) = abc

– the vectors being in the direction of the measurement
and all being perpendicular to each other. Of course,
we’ve taken for granted that the objects are rectangu-
lar (we’ve been working always with rectangular coor-
dinates) and that a whole number of units will just fill
the measured length, area, or volume. But when this
is not so we know how to get round the difficulty by
dividing the units into smaller and smaller ‘sub-units’;
or else, in the case of area, by breaking them into pieces
(e.g. triangles, of known area) so as to fit more and
more closely the area we’re trying to measure. Find-
ing the area of a circle (Section 3.1), by the method of
Archimedes, is a beautiful example. In short, we can
‘pin down’ the quantity we’re trying to measure as lying
between ‘this’ and ‘that’ – where the ‘this’ and ‘that’
are upper bounds and lower bounds, respectively.
And that means, in principle, that it can be measured
by a real number (generally irrational, see Book 1) as
accurately as we please!

So much for the simple definitions of length, area, and
volume of simple shapes. More generally, we’ll have to
use ideas from another branch of mathematics – cal-
culus – dealt with in other Books of the Series. But
already things look a bit strange; because any length,
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in the definitions above, is measured by the vector dis-
tance between two points, which is taken positive only
because we don’t usually care whether it refers to ‘going’
or ‘coming back’ – and so decide to use the modulus of
the vector. Similarly, the area may be defined in vec-
tor language as a vector product: the shape shown in
Fig.22 (called a parallelogram), with two pairs of par-
allel sides, two of which are the vectors a, b, has a vector
area

A = a× b = ab sin θabn, (6.8)

where n is a unit vector ‘normal’ (i.e. perpendicular)
to the surface. (Notice that we’re no longer talking only
about rectangles, the vectors a, b being at any angle θab.)
The normal is determined (as in the definition following
equation (5.8)) so as to point in the ‘right-hand screw’
sense relative to a and b. When we talk about the area
of the surface we’re usually thinking of the magnitude
of the vector area: A = |A|. But if we need to know the
difference between ‘top’ and ‘bottom’ we must always
remember that the vector area A can carry a sign (±);
and when we go on to look at volume we’ll find similar
problems. So we must deal with both things in a bit
more detail.

Note: Skip the next Sections on first reading; but have
a look at Chapter 7 (the last one!)
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6.3 Area in vector form

Vector area is important when we think of something
crossing or passing through a surface. If the surface is
the open end of a water pipe the normal n can show
the way the water flows (e.g. ‘out’, along n, when the
vector in (6.8) is a positive number times n); and if we
are thinking of the curved surface of an umbrella, then
the resultant vector area will tell us how much cover it
gives against the rain that falls on it.

Any kind of surface can be made out of very small el-
ements (e.g. rectangles, with sides of lengths a and b),
each with a vector area A = An (n chosen by the ‘right-
hand rule’). So we look at just one small element, writ-
ing its vector area as A = A1e1 + A2e2 + A3e3 where
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(taking a scalar product with e1) A1 = A · e1 and so on.
The component A3 is the projection of A in the direc-
tion e3 (the z-axis in Fig.23) i.e. the projection on the
xy-plane. Every element of the surface makes its own
projection: so if we add the projections together we get
the projection of the vector area of the whole surface
on the xy-plane. If the xy-plane is the ground and the
surface is a piece of board you’re using to protect you
against the rain, then

A3 = A · e3 = An · e3

and this projection will be the whole area of the board
when you hold it horizontally, so that n · e3 = 1. But if
you hold it sideways, so that n is parallel to the ground,
then n · e3 = 0 and the projected area is zero – you get
no cover at all!

Vector area is a very useful idea, as we’ll find in other
Books. For example, the vector area of any closed sur-
face – like that of a rectangular box – is always zero: in
this example opposite sides have the same area, but their
normals (pointing out from the surface) are in opposite
directions and the vector sum is zero. This is a general
result: it means nothing can flow in or out through a
surface that is closed – you’d have to make a hole in it.

Before starting on volume, it’s useful to show how vector
area can be written in terms of components. The vector
area of a surface element defined in Fig.22 by the vectors
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a and b, with a = a1e1 + a2e2 + a3e3, b = b1e1 + b2e2 +
b3e3, is A = a× b; and this becomes, remembering that
e1 × e2 = e3 = −e2 × e1, etc. and e1 × e1 = 0, etc.,

a× b = (a1e1 + a2e2 + a3e3)× (b1e1 + b2e2 + b3e3)

= (a1b2 − a2b1)e3 − (a1b3 − a3b1)e2

+(a2b3 − a3b2)e1.

To remember things like this we first note that each
component depends on two subscripts (e.g. the first on
‘1’ and ‘2’) and is multiplied by −1 if we change their
order (e.g. ‘1,2’ → ‘2,1’) – it is antisymmetric under
interchange of subscripts. There is a special notation for
such quantities: we write

a1b2 − a2b1 =

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ , a1b3 − a3b1 =

∣∣∣∣ a1 a3

b1 b3

∣∣∣∣ ,

a2b3 − a3b2 =

∣∣∣∣ a2 a3

b2 b3

∣∣∣∣ ,

so that, from each array on the right, the corresponding
component on the left is obtained as a product of the
numbers on the ‘leading diagonal’ (e.g. a1, b2) minus the
product of those on the ‘second diagonal’ (i.e. b1, a2).
With this notation, the vector product above can be put
in the (re-arranged) form

a×b = e1

∣∣∣∣ a2 a3

b2 b3

∣∣∣∣−e2

∣∣∣∣ a1 a3

b1 b3

∣∣∣∣+e3

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ . (6.9)
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Each array, with the rule for ‘multiplying it out’ to get
a single number, is called a determinant. We’ll meet
determinants in other Books, but for the moment we’re
just using the notation. Similar determinants can be
set up, with any number of rows and columns, and any
of them can be ‘expanded’ in terms of smaller determi-
nants. To show how useful they can be in helping us
to remember very complicated things, let’s look at an
expression for the vector product (6.9) as a single de-
terminant with three rows and columns: it turns out to
be

a× b =

∣∣∣∣∣∣
e1 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ . (6.10)

To expand this ‘3×3’ determinant in the form (6.9) you
take the element in the first row and the first column (it
is e1) and multiply it be the ‘2×2’ determinant that’s left
when you strike out the first row and column; then you
move to the next element in the first row (it is e2) and do
the same, multiplying it by the determinant that’s left
when you strike out the first row and second column; and
then you move to the next element (e3) and multiply
it by the determinant that’s left when you strike out
the row and column that contain it. Finally, you add
together the three contributions you have (one for e1,
one for e2, and one for e3) – but in working along the
first row, in this way, you have to multiply alternate
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contributions by −1. If you use this simple recipe you
will get (6.9).

We’re now ready to find the volume of a ‘box’ (called
a parallelopiped) defined by three vectors a, b, c as in
Fig.24. This will be the ‘volume element’ in 3-space.

6.4 Volume in vector form

From Fig.24 we see that the whole object could be built
up from thin slabs, each in the form of a parallelogram
with area ab sin θab and thickness d i.e. with volume
abd sin θab. By stacking a number of such slabs, one on
top of another, we get an approximation to the volume
of any object with three sets of parallel faces (i.e. a
parallelopiped). The top face is then at a vertical height
h = nd above the bottom face and the total volume (that
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of n slabs) is thus abh sin θab. Now h = c cos φ, where c
is the length of the vector c and φ is the angle it makes
with the vertical (the normal to the plane of a and b).
From this it follows that

V = abc sin θab cos φ

and the formula will be exact in the limit where we take
an enormous number of thinner and thinner slabs.

As in dealing with area, we can put this result in a
convenient form even when all three vectors (a, b, c) are
expressed in terms of their components. The factor
ab sin θab is the modulus of the vector area of the paral-
lelogram, A = An (n being the upward-pointing normal
in Fig.22), while c cos φ = n · c (φ being the Greek letter
‘phi’); and the volume formula thus follows as a triple
product

V = (a× b) · c = c · (a× b). (6.11)

Of course there’s nothing special about the vector c: if
we draw Fig.24 with vectors b and c along the edges of
the bottom plane, instead of a and b, we’ll get a different
formula for the same volume. In this way we find

V = a× b · c = b× c · a = c× a · b
= a · b× c = b · c× a = c · a× b

are all expressions for the same volume. The relative
positions of the ‘dot’ and the ‘cross’ don’t matter, so
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the triple product is often written as [a b c] and the last
results then become

V = [a b c] = [b c a] = [c a b],

where the different forms arise from a cyclic inter-
change, abc→bca→cab. Note that when the three vec-
tors form a right-handed system, as in Fig.24, the vol-
ume V given in this way is always positive; but if you
change this order the sign of the result is reversed. We
needn’t worry about this (we usually only want the mag-
nitude of the volume) but we keep it in mind.

Finally, we express V in terms of the rectangular com-
ponents of the vectors a, b, c, as we did in the case of the
vector area. Thus, writing V = a · b × c and using the
formula (6.9), but with b, c in place of a, b, we see V can
be written as the scalar product of

a = a1e1 + a2e2 + a3e3

and the vector product b× c in the form

e1

∣∣∣∣ b2 b3

c2 c3

∣∣∣∣− e2

∣∣∣∣ b1 b3

c1 c3

∣∣∣∣ + e3

∣∣∣∣ b1 b2

c1 c2

∣∣∣∣ .

From the properties of the Cartesian unit vectors (e1 ·
e1 = 1, e1 · e2 = 0, etc.) this product gives the volume
V in the form

a1

∣∣∣∣ b2 b3

c2 c3

∣∣∣∣ − a2

∣∣∣∣ b1 b3

c1 c3

∣∣∣∣ + a3

∣∣∣∣ b1 b2

c1 c2

∣∣∣∣ .
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But this is the expanded form of a single ‘3×3’ determi-
nant, as in (6.10); so we can write

V =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ . (6.12)

This is a very general result: the vectors a, b, c can point
in any directions and have any lengths we please – we
only need to know their 3-space components and we can
say at once what volume element they define.

Exercises

1) Use the transformation equation (6.3), which describes
the rotation of all 3-space vectors around a common axis,
to show that the angle between any two vectors, p and
q, is unchanged by this rotation.

2) Show that the magnitude of the vector area defined by
the two vectors a, b, and the volume of the parallelopiped
defined by three vectors a, b, c, are also invariant under
the rotation (6.3).

3) Work out the volume of the parallelopiped in the last
Exercise, and the vector areas of its six faces, when the
vectors a, b, c are

a = 3e1 + e2, b = e1 + 2e2, c = e1 + e2 + 2e3.

Make a drawing in which the vector areas are repre-
sented by arrows.
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4) Besides the triple product in equation (6.11), which
is a scalar quantity, there is also a vector triple product.
For the three vectors a, b, c this is defined as the vector
product of a with b × c: Pabc = a × (b × c). Since
Pabc is perpendicular to a and b × c, while the latter is
perpendicular to the plane containing b and c, the triple
product must lie in the plane of b, c. Show that

Pabc = (a · c)b− (a · b)c.

(This is quite hard! – and we don’t use it unless we
want to prove (7.19), near the end of the book. To get
the result just given, you should introduce perpendicular
unit vectors e1, e2, e3, with e2 parallel to b and e3 in the
plane of b, c. You can then put b = be2 and c = c2e2 +
c3e3 and also take a = a1e1 + a2e2 + a3e3. On expressing
the vector products in Pabc = a × (b × c) in terms of
the components of a, b, c, you should find (noting that
b× c = bc3e2 × e3 = bc3e1) Pabc = a3bc3e2 − a2bc3e3.

This can be re-written - adding and subtracting a term
a2bc2e2 -

Pabc = (a2c2 + a3c3)be2 − a2b(c2e2 + c3e3).

The result we set out to prove is the same as this ex-
pression when we write the scalar products in terms of
vector components.)
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Chapter 7

Some other kinds of
space

7.1 Many-dimensional space

So far we’ve been talking mainly about Euclidean spaces
of 2 or 3 dimensions – 2-space and 3-space. They were
vector spaces, containing all the vectors (v) that could
be expressed in the form v = v1e1 + v2e2 (2-space) or
v = v1e1 +v2e2 +v3e3 (3-space), where e1, e2, e3 are basis
vectors and the coefficients v1, v2, v3 are algebraic num-
bers called vector components. To include both cases we
can write

v = v1e1 + v2e2 + . . . vnen, (7.1)
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where n = 2 for 2-space and n = 3 for 3-space. Remem-
ber that every vector had a length (or magnitude) and
a direction; and was often represented as an arrow, of
given length and pointing in the given direction. (Math-
ematicians call the arrow a “directed line segment”.)

Remember, too, that the components, v1, v2, ..., relate
the vector to the basis and give us a way of labelling any
point in space, P, as P(v1, v2, ...). The numbers v1, v2, ...
are components of a position vector (often denoted
by r) corresponding to the line OP pointing from the
origin O to the point P; and they are also called the
coordinates of point P. So far, we have always chosen
the basis vectors to be of unit length and perpendicular
to one another. In the language of Chapter 6, any two
basis vectors (ei, ej) have scalar products

ei · ej = 1 when i = j ;

(7.2)

ei · ej = 0 when i 6= j ;

for all values of i, j in the range 1, 2, ..n. This is the
choice we started from in Chapter 1, taking it as the
“metric axiom” for 2-space (n = 2). And the same
choice, but with n = 3, leads to the 3-space considered in
Chapter 6. In either case, the properties shown in (7.2)
allow us to express the length of any vector in a ‘sum-
of-squares’ form. In 3-space, for example, the square of
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a velocity vector, |v|2 = v · v, is given by

|v|2 = (v1e1+v2e2+v3e3)·(v1e1+v2e2+v3e3) = v2
1+v2

2+v2
3,

(7.3)
where there are no terms such as v1v2 because e1 ·e2 = 0.

The scalar products of the basis vectors are often set out
in a square array, like this – e1 · e1 e1 · e2 e1 · e3

e2 · e1 e2 · e2 e2 · e3

e3 · e1 e3 · e2 e3 · e3

 =

 1 0 0
0 1 0
0 0 1

 . (7.4)

An array of this kind is called the metric matrix of
the space, and all such spaces – in which length can be
defined as in (7.3) – are called “metric spaces”.

Nothing we’ve said so far depends on n having the value
2 or 3: the simplest generalization of our ideas about ge-
ometry is just to keep everything, but allow n to become
bigger than three. We then talk about “n-dimensional
spaces”. The fact that we can’t imagine them, because
we’re so used to living in 3-space, is not important. If
we can find a use for them, then we use them!

So let’s put n = 5 and take it as an example of a 5-
space. In Book 1, Chapter 6, we talked about a ‘space’
(though we didn’t call it that) in which there were five
categories of students in a class of 40. The categories
were defined by putting the students into groups, ac-
cording to the ranges into which their heights fall. Sup-
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pose we measure them and find the following results:
Heights of students Numbers
Range (a): 1m 5cm to 1m 10cm 4 students
Range (b): 1m 10cm to 1m 15cm 8 students
Range (c): 1m 15cm to 1m 20cm 13 students
Range (d): 1m 20cm to 1m 25cm 12 students
Range (e): 1m 25cm to 1m 30cm 3 students

The numbers in these five categories show the ‘state’
of the class; and if we use a to stand for a student —
no matter which one — in category (a), b for one in
category (b), and so on, then we can describe the state
of the class in symbols as

s = 4a + 8b + 13c + 12d + 3e (7.5)

– which looks surprisingly like a vector! so we’ll call it
a state vector.

The students in the five categories can be ‘sorted out’
or selected by introducing selection operators (as we did
in Book 1). Let’s call them A, B, ... E so that A selects
only students in group (a), and so on. These operators
have (as we discovered) the algebraic properties

AA = A, BB = B, ... EE = E (7.6)

and, for pairs of different operators,

AB = BA = 0, AC = CA = 0, ... DE = ED = 0. (7.7)

97



And they work on the state vector s as follows:

As = 4a, Bs = 8b, ... Es = 3e,

This shows that each selects a part of the class and that
putting the results together again we get the whole class:

(A + B + C + D + E)s = 4a + 8b + ... + 3e = s.

In other words,

A + B + C + D + E = 1 (7.8)

– the ‘unit operator’ which leaves any state vector un-
changed. Operators with these properties form what
mathematicians call a “spectral set”: but here we’ve
set them up using a very practical example, rather than
snatching them out of the sky – as a real mathematician
might do.

But let’s get back to vector spaces. Algebra provides
one way of dealing with selection, geometry provides
another. When we use the vector (7.5) to stand for the
‘state’ of the school we’re really thinking of a, b, ... e as
‘basis vectors’ or ‘unit steps’ along five different axes.
And we can give them any properties we please – sup-
posing, for example, that each of them is perpendicular
to all the others, even though that would be impossible
with 3-space thinking. The metric matrix will then no
longer be (7.4): it will have five ‘1’s along the diagonal
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and zeros everywhere else. It may all look strange – but
who cares? We’re only using a mathematical language
and it’s up to us to decide how the symbols should be-
have. Now that we’ve decided, we can think of s in (7.5)
as the 5-dimensional vector formed by taking 4 steps of
type a, 8 steps of type b, and so on, and combining them
by addition (i.e. one after another, as in Fig.19). And
the squared length of the vector, with this metric, will
be the sum-of-squares of its components.

The selection operators can now be looked at geometri-
cally: As = 4a is simply the projection of the vector s on
the axis defined by the unit vector a, while Bs = 8b is
its projection on the b axis. The property AA = A then
simply means that projecting twice on a given axis can
produce nothing more than doing it only once; while
BA = 0 means that any projection on the a axis will
have zero projection on the b axis – that’s why we chose
the unit vectors perpendicular (zero scalar products).

Sometimes it’s useful to change this geometrical picture
slightly. For example, if we want to compare two differ-
ent classes, of different sizes, we’d be more interested in
the fractional numbers of students in the various groups.
In that case we might use a vector

s = (4/40)a + (8/40)b + (13/40)c + (12/40)d + (3/40)e

to show the state of the class, so that the projections
along the five axes will represent these fractions directly.
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But then the ‘pointer’ s, which shows how the students
are divided among the five groups, would not have very
nice properties: if all the students belonged to the same
group (a) we’d have s = (40/40)a = a and this would be
a unit vector along the a axis – but that’s a very special
case. Is it possible to choose the vector components so
that s will always be a unit vector, but will point in
different directions according to the division of students
into the five groups?

The components we’ve just tried, namely

(4/40), (8/40), (13/40), (12/40), (3/40),

won’t do – because the sum of their squares doesn’t give
1. But the sum of the numbers themselves does give 1.
So why don’t we try

√
4/40,

√
8/40, ...√

3/4? If we do this, the vector s showing the state of
the class will become√

4/40 a+
√

8/40 b+
√

13/40 c+
√

12/40 d+
√

3/40 e

and the sum of the squares of the components will be
exactly 1. So it is possible to represent the state of the
class by a unit vector, pointing out from the origin in
a 5-space, in a direction that will show the fractional
number of students in each of the 5 categories.

If we want to compare two classes, to see if the heights
of the students follow the same pattern, we just ask if
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the vectors s1 and s2 point in roughly the same direction.
If they do, their scalar product s1 · s2 will have a value
close to 1; if the classes are very different (e.g. one of
5-year olds and one of 16-year olds) the scalar product
of the vectors will be much closer to zero.

This example was about students, divided into groups
according to height; but we might have been talking
about potatoes of different sizes, or about objects pro-
duced in a factory and not all coming out quite right
(some too big some too small), and we can use the same
sort of vector description whenever we talk about cate-
gories. What’s more, we can choose the metric in any
way that seems useful for what we have in mind — as
we’ll see in the next two Sections.

7.2 Special Relativity:

space-time

The starting point for this Book was the idea of distance
and how it could be measured using a ‘measuring-rod’,
whose length (the distance between its ends) was taken
as the unit of distance. We also mentioned time, and
how it could be measured using a ‘clock’ whose pendu-
lum, swinging back and forth, marked out units of time;
and also the mass of an object, which could be mea-
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sured using a weighing machine. But so far mass and
time haven’t come into our picture of space: the idea
of length alone has allowed us to build up the whole of
Euclid’s geometry.

Since about 1904, however, all that has changed. Space
and time can’t always be separated: it’s no use giving
my address (my ‘coordinates’ in space) if I don’t live
there any more — so perhaps my coordinates should
really become x, y, z, t, the last one being the time at
which I am (or was, or will be) there. The four coordi-
nates together define a space-time point or an event;
and when we talk about how things happen, or change,
we need all four of them. This is especially true when
two people (usually called the “observers”) see the same
event: one says it happens at the point x, y, z, t, the
other says it happens at x′, y′, z′, t′. But these numbers
depend on the reference frame of the observer: from
what origin in space (where x = y = z = 0) are the
distances measured; and when was the clock started (by
setting t = 0)? Einstein’s theory of relativity is about
how the numbers describing the same event, seen by
different observers, are related.

We’ve already looked at changes of reference frame in
Chapter 6. Figure 20a showed how the distance between
two points, P and Q, was left unchanged (invariant)
when the frame was moved by a ‘translation’ in which
xP → x′

P = xP + D etc. and xQ → x′
Q = xQ + D etc.
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– so the differences xP − xQ stayed the same. But now
we’re going to move not the points but instead the refer-
ence frame, looking at the same points but seen by the
different observers. And we’ll take the simplest transla-
tion you can imagine (Figure 25), in which the frame is
simply shifted along the x-axis. The same point, with
coordinates x, y, z for the first observer, will then have
coordinates x′, y′, z′ for an observer in the shifted frame;
and the relationship between the two sets of coordinates
will be

x′ = x−D, y′ = y, z′ = z.

If we want to include the time t, and suppose that the
observers make their measurements at the same time,
then the coordinates of the same event in 4-space will
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be related by

x′ = x−D, y′ = y, z′ = z, t′ = t, (7.9)

which is a very simple linear transformation (i.e. in-
volving only first powers of the variables x, y, z, t and a
‘constant’ D).

When time is included, however, we have to think about
change and motion – which we haven’t done so far. If
Frame 2 is moving relative to Frame 1, so that it goes a
distance v to the right in every second (v not changing
with time), then after t seconds it will have moved a
distance D = vt. The constant v is called the speed
of the motion. More generally, as in Fig.20a, D and
v would become vectors, depending on direction and v
would be the ‘velocity vector’; so here v, the speed in
the x-direction, is just the x-component of the velocity –
and there’s no harm in using the word “velocity” when
we really mean speed.

After time t then, (7.1) will become

x′ = x− vt, y′ = y, z′ = z, t′ = t, (7.10)

and this is called the “standard Galilean transforma-
tion”. It goes back to the days of Galileo (1564–1642),
who made some of the earliest experiments on motion.
And it relates the coordinates of any given event, as
measured by an observer in Frame 2, to those measured
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by one in Frame 1 — when Frame 2 moves with constant
velocity v, relative to Frame 1, as in Fig.25. The science
of kinematics (from the Greek word ‘kinesis’, mean-
ing movement) deals with length, time, and movement;
so now we’re starting to think about kinematics. In this
field the only ‘tools’ we need, in making experiments, are
a measuring-rod and a clock; and very often we don’t
even need to actually do the experiments – it’s enough
to think about them, making a thought-experiment.
We’re going to make some amazing discoveries, just by
thinking about things.

First of all, we’ll suppose our clocks and measuring-rods
are perfect. This means that if two lengths are found to
be equal, then they will stay equal for all times (that’s
why we put in the word “perfect”, because a real rod
might get bent or broken); and similarly when two per-
fect clocks, both at the origin in some reference frame,
show the same times, then they will do so even with
a different choice of reference frame. As long as we’re
talking about kinematics (not about real objects, which
have mass and are affected by ‘gravity’ – which we meet
in Book 4) that’s all we need.

Suppose you’re in a train, waiting at a station for pas-
sengers to get on and off, and another train is passing.
Each train is a reference frame, like the frames in Fig.25,
and from your window you see people in the other train
doing all the usual things – reading the newspaper, walk-
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ing about, or even drinking tea: and perhaps you won-
der for a moment which train is moving? Their train is
moving with some velocity v relative to your train, but
everything goes on as if it were’nt moving at all. In fact,
all movement is relative: your train may not be mov-
ing relative to the station – but it is certainly moving
(along with the whole station, the town, and the earth
itself!) relative to the sun and the stars. You actually
feel your relative motion only when it changes : if your
train suddenly starts, you’ll feel it; if you’re standing
you may even fall over. And the people in the other
train will not notice they are moving with velocity v rel-
ative to you, unless v changes : if you see them falling
over, or spilling their tea, you’ll guess that the driver
has put the brakes on and the train is slowing down. So
there’s something important about a relative velocity
being constant : observers in two reference frames, mov-
ing with constant relative velocity, see things happening
in exactly the same way. Albert Einstein (1879-1955)
was the first to see just how important this was – for
the whole of Physics. He took it as an axiom, which can
be put in the following way:

The laws of physics are exactly the same in
any two reference frames in uniform rela-
tive motion (which means moving relative
to each other with constant velocity in a
straight line).
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We’ll call this Einstein’s Principle of Special Relativity
– “special” because objects with a mass, and subject to
gravity (the force that makes things fall to the ground),
are not yet included in the theory. The ideas of Gen-
eral Relativity, which takes account of mass and gravity,
are much too difficult for this book, though we mention
them briefly in the next Section. In Relativity Theory,
frames “in uniform relative motion” are usually called
inertial frames – but more about that in Book 4, where
we begin to talk about mass.

Let’s now go back to equation (7.10) which relates the
coordinates of an event, as measured by observers in
the reference frames of Fig.25. The observer in Frame
1, finds values x, y, z, t, while the observer in Frame 2
finds values x′, y′, z′, t′ relative to his axes; both of them
using the same standard unit of length and both having
set their standard clocks to t = t′ = 0 at the start of
the experiment when, we suppose, the origin of Frame
2 is just on top of the origin of Frame 1. The distance
in space to the event, call it s, is the same for both
observers:

s2 = x2 + y2 + z2 = x′2 + y′2 + z′2

and both believe t = t′, as they set their clocks to agree
at the start (when O′ was passing O). The invariance of
these quantities, in passing from one reference frame to
the other is what leads to the ‘transformation equations’

107



(7.10), which now become

x′ = x− vt,

y′ = y,

z′ = z,

t′ = t. (7.11)

But this transformation is a bit too special: it keeps s2

and t the same for both observers, but keeps them sepa-
rately invariant – s2 in 3-space, t in a 1-space. However,
we agreed that time should be treated as just another
coordinate. Is there a more general transformation, that
will allow space and time coordinates to get mixed up?
When this can happen, we’ll be talking about a 4-space!

To see that such a transformation can be found, let’s
think of another simple event. We fire a gun, at the
origin, at time t = t′ = 0 just as O′ is passing O. The
noise travels out from the gun, in all directions, with
some constant speed which we can call c. After time t
it will have reached all the points at a distance r = ct
from the origin O. These will lie on a surface of radius
r = ct (a sphere) such that

r2 = c2t2 = x2 + y2 + z2.

If we could assume that an observer in Frame 2 (along
with his friends – all with standard clocks – placed at
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points where the noise arrived) all observed the same
sphere of noise arrivals, then we’d suppose that

s2 = c2t2 − x2 − y2 − z2 = c2t′2 − x′2 − y′2 − z′2 (7.12)

was another invariant. We call it the squared interval
(not just ‘distance’) and it depends on all four coordi-
nates. Notice that (7.12) defines a 4-space metric that’s
a bit strange: it has a matrix like that in (7.4) but with
three diagonal elements the same, the fourth having op-
posite sign (e.g. three −1s and one +1). But, after all,
time (we’ve given it a ‘time coordinate’ ct) and space
(with coordinates x, y, z) are different – and this shows
up in the sign difference.

Of course, a ‘thought experiment’ like this would be dif-
ficult to do; and we don’t know if it has any relationship
to the real world. But it does suggest something we can
try.

Let’s suppose then, that in Einstein’s 4-space the space
and time coordinates of events observed from frames
in uniform relative motion (Fig.25) are related so that
(7.12) is satisfied. The big question is now: What is this
relationship? And to get the answer we can argue as
follows.

The new invariant contains a new constant (c), also a
velocity, like the v in (7.11); and so v/c must be a pure
number, which will go to zero if the constant c is big
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enough, or if v is small enough. Let’s now define a num-
ber, usually called γv (Greek ‘gamma’, with a subscript
to show it depends on the relative velocity v):

γv =
1√

(1− v2/c2)
. (7.13)

Notice that we’ve used the squares of the velocities in
the denominator, because changing the direction of the
x-axis will change the sign of a velocity – and we don’t
expect it will matter whether the axis points to the right
or the left. Also, when v is small the denominator in
(7.13) will go towards 1 – and so will γv. So if the
new transformation equations depend on γv they will
fall back into the Galilean transformation when the two
reference frames are hardly moving– just as we’d expect.

Let’s now try, instead of the first three equations in
(7.11),

x′ = γv(x− vt), y′ = y, z′ = z.

And instead of taking time to be universal, the same for
both observers, let’s try something a bit like the first
equation above. If we put

t′ = γv(t− ?× x),

where ‘?’ stands for something we don’t yet know, then
we can substitute the values of x′, y′, z′, t′ (given in the
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last four equations) into the right-hand side of (7.12);
and comparing the two sides will tell us what to choose
for the ‘?’. The only terms that contain t alone (not
t2) are c2γ2

v × (−2xt×?) and 2γ2
vxvt. There’s nothing

to balance these terms on the left-hand side of (7.12),
so the equality tells us that their sum must be zero and
this fixes the ‘?’ To get zero we must choose ?= v/c2

and so we must take

t′ = γv

(
t− v

c2
x
)

.

What we have shown is that the supposed invariance of
the ‘metric form’ c2t2 − x2 − y2 − z2 requires that the
Galilean transformation equations be changed, becom-
ing

x′ = γv(x− vt),

y′ = y,

z′ = z,

t′ = γv

(
t− v

c2
x
)

. (7.14)

These are the equations of the Lorentz transforma-
tion, named after the Dutch mathematician and physi-
cist Lorentz (1857–1928), who first got them, but never
guessed how they would change the world! That was

111



left to Einstein, who found them again and made them
a cornerstone of his relativity theory.

Nowadays we’re always hearing about mass and energy
(who hasn’t ever seen Einstein’s famous equation E =
mc2?), atomic power, atomic bombs, space travel, and
the strange things that happen in the universe. But let’s
stop for a minute! We haven’t even got as far as physics:
that will have to wait for other Books (beginning in
Book 4). This Section is just a start, in which we’re
beginning to use some of the things we already know
about number and space. Before this we didn’t even
include time, and we still haven’t really thought about
mass. So it’s amazing that we can get so far just by
thinking about things. Before stopping we’ll connect
briefly with what we call ‘reality’ – a few questions and
a few conclusions.

The first question is What is the meaning of the con-
stant c? and the second is How big is it? – and does it
correspond to anything we can measure? In fact, there
is something that travels through empty space with the
velocity c: it is light, which we all know goes extremely
fast – if you switch a light on it seems to fill the whole
room in no time at all! Physics tells us what light is
and gives us ways of finding how fast it travels: if the
switched-on light starts from the origin, then it reaches a
point with (space) coordinates x, y, z after a time t given
by t = (distance/velocity) =

√
x2 + y2 + z2/c, where c
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can be calculated in terms of quantities we can mea-
sure in the laboratory. And its value is almost exactly
300 million metres every second (3×108m s−1), so in ev-
eryday life we needn’t worry about using the Galilean
equations (7.10). The other big question is How did
we get so far without knowing any physics? The an-
swer is not at all easy, but roughly speaking it’s because
we left out mass and gravity, and electric charges, and
most of the things that go into physics – thinking only
of kinematics (length, time, and motion) – except when
we supposed that all the ‘physics’ was the same for “two
observers in uniform relative motion”. We didn’t need
all the details: the Lorentz transformation follows, as
we saw, from kinematical principles. We’re just lucky
to find that physics supplies a ‘natural’ method of get-
ting the value of the constant c.

What about conclusions? The first one is that there’s
a natural limit to the speed with which anything can
move – even an observer in a spacecraft – and this limit
is v = c. For then γv in (7.13) would become infinite; and
for v > c it would become imaginary. All the quantities
we measure and relate must be real ; and finite, so the
only velocities we can consider must be less than c.

There are many more amazing conclusions. We’ll just
mention two: if an observer in Frame 1 looks at an object
in Frame 2, he’ll be surprised to find that it has shrunk
in the direction of motion; and that a clock in Frame 2

113



is going slow!

The Lorentz contraction

Suppose we have a measuring-rod of length l0, lying
along the x-axis and not moving relative to Frame 2;
and call its ends A and B. It will be moving relative
to us, in Frame 1, with velocity v. But to an observer
in Frame 2 it will be at rest and will have a proper
length, also called rest length,

l0 = x′
B − x′

A, (7.15)

not depending on what time his clock shows.

Looking at the rod from our reference frame (Frame 1),
the length of the rod at time t on our clock will be

l = xB(t)− xA(t). (7.16)

But we know from (7.14) how the coordinates measured
in the two frames must be related:

x′
A = γv(xA − vt), x′

B = γv(xB − vt).

It follows that, using (7.15),

l0 = x′
B − x′

A = γv(xB − xA) = γvl,

where l, given in (7.16), is the length of the rod according
to us. Thus,

l = l0/γv. (7.17)
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In other words, the measured length of the rod when it’s
moving away from us with velocity v, will be less than
the rest length – as measured in a frame where it is not
moving. This effect is called the Lorentz contraction.
It is very small for speeds which are tiny compared with
c (≈ 300 thousand kilometres/second): so we never no-
tice it in everyday life. But it is important in physics
– and accurate measurements are in perfect agreement
with the predictions.

Time dilation

Another remarkable conclusion follows just as easily. A
clock moving away from us will register intervals of time
different from those shown by a clock at rest in our ref-
erence frame: times get longer – an effect called time
dilation.

Remember, we measured the times t, t′ from the moment
when the clock at the origin in Frame 2 passes that in
Frame 1, setting t′ = t = 0. The clock at the origin in
Frame 2 will be at the point with x′ = 0 but relative
to Frame 2 its position at time t will be x = vt. Now
according to the last equation in (7.14) the times shown,
for the same event (as noted by two different observers),
must be related by

t′ = γv

(
t− v

c2
x
)

= γvt

(
1− v2

c2

)
= γvt/γ

2
v = t/γv,

where we’ve put in the value x = vt, for the moving
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clock, and used the definition of γv in (7.13). Thus,

t = γvt
′. (7.18)

In other words, all times measured in the moving system
(Frame 2) must be multiplied by γv to get the times
measured on our clock in Frame 1. Now the time taken
for something to happen – the time between two events,
A and B say, at a given position in space – will be T0 =
t′B− t′A for an observer moving with his clock (Frame 2):
he will call it his “proper time”. And this leads to some
very strange effects: for instance, if Frame 2 comes back
to the origin O in Fig.25, after travelling all the way
round the world, the Frame 1 observer (who stayed at
home with his clock) will note that the journey took
time T = γvT0 – which is longer than the time (T0)
noted by the traveller. Who is right? Both are: each
has his own ‘proper time’ and we shouldn’t be surprised
if they don’t agree. The differences are normally almost
too small to measure: but, by using extremely accurate
(‘atomic’) clocks and taking them round the world on
ordinary commercial aircraft, they have been measured
and are in rough agreement with the formula. More
accurate experiments really do confirm (7.18).
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7.3 Curved spaces: General

Relativity

In Section 1.1 we said that “space itself is very slightly
‘bent’, especially near very heavy things like the sun
and the stars, so that Euclid’s ideas are never perfectly
correct ... ” One of Einstein’s most brilliant ideas, which
he developed during the years 1905–1915, was that the
mass of a heavy object produced a local ‘curvature’ in
the space around it: this led him from the theory of
Special Relativity to that of General Relativity, in which
mass and its effects are included. As we haven’t yet done
any Physics we can’t even begin to talk about General
Relativity. But we are ready to think about ‘curved
space’ and what it means.

In Special Relativity the 4-space metric (three space co-
ordinates and one more for time) was very similar to that
for ordinary Euclidean 3-space (Section 5.2): the square
of the interval (‘distance’) between two events (‘points’
in space-time) still had a ‘sum-of-squares’ form, apart
from the ± signs attached to the 4 terms; and it had
the same form however big the interval. A space like
that is called ‘pseudo-Euclidean’.

In General Relativity, the metric form is no longer so
simple; and it’s no longer the same for all points in
space – it can depend on where you are. To get an idea
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of what this means we’ll use the example from Section
1.1: the surface of the earth is a curved space, though
it’s only a 2-space and it’s a bit special because the cur-
vature is the same at all points – how much it’s bent
depends only on the radius of the earth. Of course, the
mathematics of curved surfaces is important for mak-
ing maps. And it was important in the ancient world
because the astronomers at that time believed the sun
and the moon moved around the earth on spherical sur-
faces. The Hindus and Arabs invented many arithmetic
rules for making calculations of their positions, but the
rules were not turned into algebraic formulas until about
the 13th century. The theory that followed tells us how
to calculate lengths and angles for lines which are ‘as
straight as you can make them’ on a spherical surface.
Such a line follows the shortest path between two points,
A and B, on the surface and is called a geodesic (from
the Greek words for ‘earth’ and ‘measurement’). If a
ship sails from point A on the earth’s surface, to point
B, always keeping the same direction, and does the same
in going from B to a third point C, then the three-sided
path ABC is called a spherical triangle. The geome-
try of such paths was studied by mariners for hundreds
of years and led to the branch of mathematics called
spherical trigonometry.

What we want to get now is the form of the metric that
determines the distance between points in a curved 2-
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space – points on a spherical surface ‘embedded’ in the
3-space world we live in. If we can do it for this case,
then we’ll get ideas about how to do it for a curved 3-
space embedded in a 4-space – or for a curved 4-space
embedded in a 5-space. Notice that if we want to ‘bend’
a space we always need (at least) one extra dimension
to describe the bending: we can’t describe the surface
of a sphere, which is two-dimensional, without a third
dimension to describe the sphere itself!

First of all we need to generalize the ‘Law of Sines’ and
the ‘Law of Cosines’ (Section 5.5), which apply to a
triangle with vertices, A,B,C, on a flat surface: we want
corresponding results for the spherical surface shown in
Fig.26.
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Figure 26

Suppose A, B, C are the position vectors of points A,B,C,
relative to the centre of the sphere (the earth); and use
A, B, C for the angles (on the surface) at the corners of
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the triangle. We’ll also use a similar notation for the
lengths of the sides, a for the side opposite to angle A,
and so on.

The Law of Sines looks almost the same as for a flat
surface, being

sin A

α
=

sin B

β
=

sin C

γ
, (7.19)

but the denominators are angles – not side lengths. Re-
member, however, that the angles α, β, γ are at the cen-
tre of the sphere (Fig.26), not at the vertices of the tri-
angle. At the same time, α = a/R, where a is an arc
length; so we can replace the angles in (7.19) by side
lengths – as long as we remember the sides are bent!
And then the formula looks exactly like that for a flat
surface.

The Law of Cosines is the one we really need. It follows
from what we know about the triple product (Section
6.4). The angle A is that between the planes AOB and
AOC, the same as the angle between the normals : and a
vector normal to AOB is A×B, while one normal to AOC
is A×C. The angle A can thus be found from the scalar
product of the two normals, which will give us cos A. So
let’s look at the scalar product (A×B) · (A×C), noting
that choosing the radius R = 1 makes no difference to
the angles.

The scalar product can be reduced using the result (see

120



the Exercises on Chapter 6)

(A× B) · (A× C) = (A · A)(B · C)− (A · C)(A · B).

For a sphere of unit radius,

B · C = cos α, C · A = cos β, A · B = cos γ.

Also A ·B is a vector of length sin γ, normal to the plane
AOB and pointing inwards (i.e.on the C-side); while A·C
is of length sin β, normal to plane AOC but pointing
outwards.

On putting these values into the expression above, we
find

(A×B) · (A×C) = sin β sin γ cos A = cos α− cos β cos γ.

There are two other relations of similar form, obtained
by starting from angle B and angle C (instead of A).
They are all collected in the Law of Cosines for a spher-
ical triangle:

cos α = cos β cos γ + sin β sin γ cos A,

cos β = cos γ cos α + sin γ sin α cos B, (7.20)

cos γ = cos α cos β + sin α sin β cos C,

for the cosines. The angles α, β, γ (radian measure) are
related to the arc lengths BC, CA, AB on the spherical
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surface: for example, putting BC = a, the angle α is
given by α = a/R, where R is the radius of the sphere.

Now think of A as an ‘origin of coordinates’ on the sur-
face and take the outgoing arcs, AB and AC, as axes,
choosing the angle between them as A = π/2. On
putting cos A = 0, the first line in (7.20) tells us that

cos α = cos β cos γ (7.21)

and this gives us all we need. For points near to A, it’s
enough to use the first few terms of the cosine series
(Chapter 4) and to write the last equation as

1− a2

2R2
+

a4

24R4
.. =(

1− b2

2R2
+

b4

24R4
..

) (
1− c2

2R2
+

c4

24R4
..

)
.

If we multiply everything by 2R2 and compare the terms
of second degree on the two sides of the = sign, the result
is a first approximation:

a2 ≈ b2 + c2, (7.22)

The squared length of the arc BC has Euclidean form:
it is a sum of squares of distances along the other two
arcs – in accordance with the metric axiom in Section
1.2 – just as it would be for a flat surface. But the
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metric is only locally Euclidean: more accurately, there
are ‘correction terms’

−(1/12R2)a2, and −(1/12R2)(b4+c4)−b2c2/R2,

which must be added on the left and on the right, re-
spectively, of equation (7.22).

Of course, when the radius of curvature R, is infinitely
large the 2-space becomes flat (zero curvature); but in
General Relativity even a very small curvature of 4-
dimensional space-time is enough to account for many
properties of the universe. Without Physics, which we’ll
start with in Book 4, it’s not possible to go any further:
but without the genius of Einstein and others like him
it would never have been possible to get this far.

Exercises

1) When we use the vector (7.5) to stand for the ‘state’
of a class (how big are the students in it) we’re using
a, b, ... e as ‘basis vectors’. The components we used,
namely

4

40
,

8

40
.
13

40
.
12

40
,

3

40

(being the fractional numbers of students in the five
height ranges) didn’t give a unit vector – because the
sum of their squares doesn’t give 1.

Show that by using the square roots of the numbers as
components you will always get a unit vector. So it
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is possible to represent the state of the class by a unit
vector, pointing out from the origin in a 5-space in a di-
rection that will show the fractional number of students
in each of the 5 categories.

2) Suppose you want to compare two classes, to see if the
heights of the students follow the same pattern. Prepare
vectors s1 and s2, like that in Exercise 1 but for two
different classes (e.g. 20 15-year old girls and 18 14-year
old boys). Is the pattern of heights similar or not?

(You can either measure or just guess the heights. The
patterns will be similar if the vectors point in roughly the
same direction. If they do, their scalar product s1 ·s2 will
have a value close to 1. For two very different classes
(e.g. one of 5-year olds and one of 16-year olds) the
scalar product of the vectors will be much closer to zero.)
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Looking back –

You started this book knowing only about numbers and
how to work with them, using the methods of algebra.
Now you’ve learnt how to measure the quantities you
meet in space (distances, area, volume), each one being
a number of units. And you’ve seen that these ideas
give you a new starting point for geometry, different
from the one used by Euclid, and lead you directly to
modern forms of geometry. Again, you’ve passed many
milestones on the way:

• Euclid started from a set of axioms, the most
famous being that two parallel straight lines never
meet, and used them to build up the whole of ge-
ometry: in Chapter 1 you started from different
axioms – a distance axiom and a metric ax-
iom – which both follow from experiment.

• Two straight lines, with one point in common,
define a plane; the metric axiom gave you a way
of testing to see if the two lines are perpendicu-
lar; and then you were able to define two paral-
lel straight lines – giving you a new way of look-
ing at Euclid’s axiom. Using sets of perpendicular
and parallel straight lines you could find numbers
(x, y), the coordinates, that define any point in the
plane. Any straight line in the plane was then de-
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scribed by a simple equation; and so was a circle.

• In Chapter 3 you learnt how to calculate the
area of a triangle and of a circle and to evaluate π
(‘pi’) by the method of Archimedes. You studied
angles and found some of the key results about the
angles between straight lines that cross.

• Chapter 4 reminded you of some of the things
you’d learnt in Book 1, all needed in the study
of rotations. You learnt about the exponential
function, ex, defined as a series, and its proper-
ties; and found its connection with angle and the
‘trigonometric’ functions.

• In talking about 3-space, the first thing to do
was to set up axes and decide how to label every
point with three coordinates; after that every-
thing looked much the same as in 2-space. But
it’s not easy to picture things in 3-space and it’s
better to use vector algebra. For any pair of
vectors we found two new ‘products’ – a scalar
product (just a number) and a vector product
(a new vector), both depending on the lengths of
the vectors and the angle between them. Exam-
ples and Exercises showed how useful they could
be in 3-space geometry.

• Chapter 6 was quite hard! But the ideas under-
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neath can be understood easily: lengths, areas and
volumes are all unchanged if you move something
through space – making a ‘transformation’. This
fact was often used by Euclid (usually in 2-space)
in proving theorems about areas; but by the end
of the Chapter you have all the ‘tools’ for doing
things much more generally, as we do them today.

• To end the book (Chapter 7) you took a look
at the next big generalization – to spaces of n di-
mensions, where n is any integer. Of course, you
couldn’t imagine them: but the algebra was the
same, for any value of n. So you were able to in-
vent new spaces, depending on what you wanted to
use them for. One such space was invented by Ein-
stein, just a hundred years ago, to bring time into
the description of space – counting t as a fourth co-
ordinate, similar to x, y, z. And you got a glimpse
of some of the amazing things that came out as a
result, things that could be checked by experiment
and were found to be true.

Before closing this book, stop for a minute and
think about what you’ve done. Perhaps you started
studying science with Book 1 (two years ago?
three or four years ago?) and now you’re at
the end of Book 2. You started from almost
nothing; and after working through about 150
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pages you can understand things that took peo-
ple thousands of years to discover, some of the
great creations of the human mind – of the Sci-
entific Mind.
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Index

Antisymmetric,
changing sign, 87

Angles, 31-37
alternate, 37
complementary, 35

Area 25-31, 84-86
Array 87-88
Axioms (first principles),

of geometry, 6
Axis, axes, 7

of coordinates, 7
(see Reference frame)

Basis vectors 64, 94
Bounds (upper, lower) 83

Circle
area of, 31
circumference of, 34
equation of, 22-23

Components 65, 94

Congruence, congruent 82
Converse (of theorem) 55
Coordinates 17-18, 55, 64
Cosine (see Trigonometric

ratios)
Cyclic interchange 91

Determinant 88
Differentials, 18, 59
Dimensions (physical) 27
Direction cosines 68, 81
Distance, 1-4

axiom, 6

Event (see Space-time)
Exponential function 26

Geodesic 118
Geometry,

as science of space, iv
Geometry,
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analytical, 9
Euclidean, 4
non-Euclidean, 118
pseudo-Euclidean, 117

Identity operator 40, 23
Image 78
Inertial frames 107
Intercept 19
Intersection

of lines 8
of planes 72

Interval 109
Invariants 27, 62, 77-82
Inverse operator 40

Kinematics 105, 113

Law of combination 40
Law of Sines 69, 120
Law of Cosines 70, 121
Laws of indices 45
Limit 30, 42
Lorentz contraction 114

Metric
axiom, 6
form, 18, 111
matrix, 96

curved space, 118, 123
Modulus (of a vector) 66

Normal (to plane) 38, 40,
48, 84

Origin (of coordinates) 6

Parallel
lines, 13
planes, 57

Parallelogram 84
Parallelopiped 89
Perimeter 17
Period, periodic, 50
Perpendicular, 7

from point to plane), 71
Plane, 8
Polygon 29
Position vector 46, 64, 95
Projection 17, 58, 99

Radian 34
Relativity theory

general 117-123
special 101-116

Rectangle 15
Rectangular box 10
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Rectangular (Cartesian)
coordinates,

in 2-space, 17
in 3-space, 59, 65

Reference frame 61, 102
Right-angle, right-angled 7
Rotation (of object) 78
Rotation (of vector) 33, 39
Rotation operator 40

Scalar product 66
triple product, 90

Series 42-47
Simultaneous equations 21
Sine (see Trigonometric ra-

tios)
Slope (of line) 19
Space-time 102
Sphere (equation of) 61, 73
Straight line,

as shortest path, 2
equation of, 19
in vector form, 70

Subspace, 60

Tangent (see Trigonometric
ratios)

Tangent (as slope of line)
19

Tangent (to a sphere) 74
Theorem 8
Time dilation 115
Transformation 77-82

Galilean, 104
Lorentz, 111

Translation 78, 102
Triangle 7
Trigonometric ratios 31

series for, 47
Trigonometry, 3

spherical, 118
Triple product,

scalar, 70-72
vector, 93

Unique (distance) 2, 6
Units 3, 26-27, 34

Vector 62-64, 94-96
free and bound, 64-65

Vector area 84
Vector product 66
Vertex 28
Volume 89-92
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