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BASIC BOOKS IN SCIENCE

About this Series

All human progress depends on education: to get it
we need books and schools. Science Education is of key
importance.

Unfortunately, books and schools are not always easy to
find. But nowadays all the world’s knowledge should be
freely available to everyone – through the Internet that
connects all the world’s computers.

The aim of the Series is to bring basic knowledge in
all areas of science within the reach of everyone. Every
Book will cover in some depth a clearly defined area,
starting from the very beginning and leading up to uni-
versity level, and will be available on the Internet at no

cost to the reader. To obtain a copy it should be enough
to make a single visit to any library or public office with
a personal computer and a telephone line. Each book
will serve as one of the ‘building blocks’ out of which Sci-
ence is built; and together they will form a ‘give-away’
science library.
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About this book

This book, like the others in the Series, is written in
simple English – the language most widely used in sci-
ence and technology. It builds on the foundations laid
in Book 1 (Number and symbols) and in Book 2 (Space)
and deals with the mathematics we need in describing
the relationships among the quantities we measure in
Physics and the Physical Sciences in general. This leads
us into the study of relationships and change, the start-
ing point for Mathematical Analysis and the Calculus –
which are needed in all branches of Science.

Notes to the Reader. When Chapters have several Sec-

tions they are numbered so that “Section 2.3” will mean

“Chapter 2, Section 3”. Similarly, “equation (2.3)” will

mean “Chapter 2, equation 3”. Important ‘key’ words are

printed in boldface: they are collected in the Index at the

end of the book, along with the numbers of the pages where

you first find them.
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Looking ahead –
The first two books in the Series introduced the ‘lan-
guage’ of mathematics – how to describe the world around
us by using symbols (marks on paper) to stand for the
quantities we measure, such as distances and times. And,
in Book 2, we used the concept of distance to build up
all the main ideas of Euclid’s geometry. But we didn’t
really study the ways in which different quantities might
be related – how one quantity (y, say) may depend on

another one (x).

A large part of mathematics is concerned with relation-
ships and the description of such relationships in terms
of symbols and equations. This field of study is called
mathematical analysis and in the present Book you’ll
learn what it’s all about and what you can do with it.

• Chapter 1 shows three ways of describing a re-
lationship between two quantities: you can make
a table, showing pairs of related values: or ‘plot’
the values in a graph, which gives you a ‘picture’
of the relationship; or (if you’re lucky) you may
find an algebraic function that gives the same
related values. And in all cases you say “y is a
function of x” and write “y = f(x)”. There are
many examples of simple functions in this chapter,
what they are called, and how they look.
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• At the heart of analysis is the calculus. The
next three chapters introduce the essential ideas
in its two main branches, the differentiation of a
given function and its integration, starting from
a very simple example – the distance s moved by
a falling body as a function of the time (t) from
its release: s = f(t).

• Chapter 5 takes us back to the representation

of any given function y = f(x) as a power series
y = a0 + a1x + a2x

2 + ...anxn.

• Finally, Chapter 6 takes a quick look at what
you can do with all these ‘tools’: extending them
to functions of more than one variable; solv-
ing differential equations, important through-
out mathematics; and using their solutions to rep-
resent a given function in yet another way – as
an eigenfunction expansion – fundamental in
mathematical physics.
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Chapter 1

Relationships between
quantities

1.1 Tables, graphs, functions

When we were talking about measuring physical quan-
tities, at the beginning of Book 1, we spoke only of dis-
tance (measured with a measuring stick), time (mea-
sured with a clock), and mass (measured using a weigh-
ing machine). Mass, Length and Time (M,L,T) are three
of the ‘primary’ quantities we meet in science; and in
Book 2 we discovered how far it was possible to get by
thinking about only two of them (L and T). So let’s pick
up from there. What might L and T stand for; and what
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do we mean by a relationship between the two?

Suppose s is the distance gone by a moving object (like a
bicycle, or a truck, or a falling stone). It has dimensions
[s]= L and is the length of the path, from the starting
point (at time t = t0, say) to the end point (at time
t = tf – where f is short for ‘final’). We’ll use s and t
to stand for the distance gone (s) and the time (t) when
it gets there. The quantities s, t are variables, while
s0, t0 will be particular values of the variables, at the
beginning of the motion, and sf , tf will be the values
at the end (final values). (Note that s0, t0, sf , tf are not

variables but just certain values that the variables might
have.) In Book 2 we nearly always measured distances
along a straight line (an ‘axis’) and used x, for example,
for a distance measured along the x-axis. But now we’re
talking about any kind of path, which could be ‘snaky’
like a serpent, so we’ll call the variable s instead.

When we talk about a relationship between the variables
s and t we simply mean the distance has a certain value
(s) for any time (t) at which we measure it: s depends

on the time t and we say s is the dependent variable,
corresponding to the independent variable t. To give an
example, the driver of a truck (which may be deliver-
ing sand to a building site) will have in front of him a
clock and a ‘counter’ of some kind, to show how many
kilometers he has driven (i.e. the corresponding value
of s at time t). The relationship between the two can
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be decribed by giving a list of number-pairs, (s0, t0) at
the start of the journey, (s1, t1) after the first 10 min-
utes, (s2, t2) after the second 10 minutes, and so on. The
corresponding values can be set out in a

t t0 t1 t2 t3 ... t8 t9 t10 t11 t12
s s0 s1 s2 s3 ... s8 s9 s10 s11 s12

‘Table’ giving times (in ‘units’ of 10 minutes) and re-
lated distances (in km). Sometimes the pairs of values
are listed automatically and the truck driver will get
a printed list at the end of his journey. Let’s suppose
he gets the such a table of values: it gives an accurate
record of his journey – a tabular way of showing the re-
lationship between distance and time. But if he shows
it to his boss it’s not at first clear what he’s been doing
with his time!

t 0.0 10 20 30 40 50 60
s 0.0 2.8 10.1 12.3 20.6 29.4 29.4
t 70 80 90 100 110 120
s 29.4 35.9 42.8 51.9 61.1 63.1

Another way of showing the same relationship is much
more pictorial and easy to understand: we make a ‘pic-
ture’, shown in Figure 1,
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To make Fig.1, the pairs of values of t and s are taken
as the x- and y-coordinates (Book 2, Section2.2) of a
point in the picture and then all the points are connected
together by short lines. This way you get a graph and it
gives you a ‘graphical representation’ of the relationship
between two variable quantities (t, s).

Of course we don’t really know what happens between

one point and the next, as the only values of s we have
are for t-values 10 minutes apart – and a lot can hap-
pen in 10 minutes (there might be a breakdown and
then the value of s won’t change until things are put
right). If instead we draw a smooth curve through all
the points, then that will mean we suppose there are
no sudden changes during any 10-minute interval – that
things continue minute-by-minute in more or less the
same way. Either way, Fig.1 gives only an approximate

picture of the journey: but it’s much easier to follow
than a big table of numbers and we can see much more
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easily what it means. For example, the truck didn’t go
very far in the first 10 minutes (less than 3 km, while a
good speed for a truck would be around 8 km in every
10 minutes); but the driver had to get the truck on the
road and fill up with gasoline and so on. He did better
in the second 10 minutes, going 7.3 km. But then in the
next interval he only went 1.6 km! Why was that? In
fact he had to stop at a quarry for a load of sand and
gravel to take to the building site; and for most of the
10 minutes the truck wasn’t moving at all. After that,
he got onto a good road and tried to make up for the
time lost. In the next 10 minutes he did 8.3 km and
he followed that with 8.8 km – pretty good for an old
truck! But he couldn’t keep it up: he’d been on the
way for nearly an hour, with some shovelling included,
and was hot and tired and thirsty. If you look at the
graph you’ll see that the distance s didn’t change at all
during the next 20 minutes: he’d stopped for a drink
and a chat with the other drivers – and the time passes
quicker than you think!

In the first half of the second hour he got on well, except
that he never did more than 7 km in any 10-minute
interval; but then he did more than 9 km in each of the
next two intervals. Why was that? In fact the road was
going uphill for the first 14 km. Once he got to the top
it was downhill for the rest of the way and he picked up
speed, doing 18 km in the next 20 minutes. Then he
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came into the town, where there was traffic and bicycles
and people crossing the road. He had to slow down and
the last 2 km took him a full ten minutes.

Now you can see why the graphical description of the re-
lationship between s and t is so useful: just a quick look
at the graph, with no calculations of any kind, is enough
to give you a good idea of what might be happening –
and even why! We’ll be using graphs throughout math-
ematics and physics; and through most of science.

There’s a third way, however, of describing the relation-
ship between two quantities x and y. It’s sometimes
possible to find a mathematical rule, a formula, for
getting the value of y when you’re given the value of x.
To give an example, let’s suppose you drop a small peb-
ble from the roof of a very high building. The distance
it falls in time t (we’ll go on calling it s but don’t get
mixed up with ‘s’ short for ‘second’ – the unit of time)
depends on t according to the rule

s = ct2, (1.1)

where c is a constant, with the approximate value c =
5 ms−2. Why do we write it in that strange way, instead
of just saying c = 5? It’s because physical quantities,
the things we measure, are not ‘just numbers’ – they are
numbers of units. Here m is the unit of length (L) – the
metre – while s is the unit of time (T) – the ‘second’,
and we say that c “has the dimensions” LT−2. So if we

6



use the formula (1.1) to find how far the pebble falls in
two seconds we must put t = 2 s; and the answer will be

s = c × t × t = 5 ms−2 × 2s × 2s

= (5 × 2 × 2)(ms−2s2) = 20 m.

The only arithmetic we need do is to multiply the num-
bers: the units ‘look after themselves’ and the result
is correctly given as 20 metres. In general, a quantity
with dimensions LT−2 will give us one with dimensions
of length (L) when we multiply it by two time factors
(T2). It was already noted (in Book2, Section 2.1) that if
we know the dimensions of a quantity it’s easy to change
our units of measurement: for if we take a new unit k
times as big as the old unit then the numerical measure
of the quantity will become k times smaller. Thus, if we
decide to use the ‘foot’ instead of the metre as our unit
of length (1 foot = 12 inches =12× 2.54 cm = 30.48 cm
≈ 0.30 m), then 20 m = (20/0.30) ft ≈ 66.67 ft; and the
quantity c, with one factor L in its dimension formula,
will become (in the same way) c = (5/0.30) ft s−2 =
16.67 ft s−2.

The third way of describing a relationship between two
quantities, using a formula as in (1.1), is what we’ll be
talking about in most of this book. Whenever we can
find a formula we can start to use the methods of math-

ematical analysis, even when the formula is much more
complicated than (1.1) and even when we want to ask
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difficult questions about the relationship and what it
means. But before going into the details let’s just note
that any relationship between two quantities – an inde-
pendent variable x and a dependent variable y – can be
written in a short form as

y = f(x), (1.2)

which can be read as “y is a function of x”. This just
means that, for every value we may choose for x, there
will be some related value of y – the variable that de-
pends on x. We don’t need to have a nice simple formula
like (1.1): if we don’t have one, then we must get the
related values from a list that’s been given to us, or
read them off from a graph – which is just a more picto-
rial way of representing measured values. The ‘function
symbol’ f simply means that if we’re told x then we
have a way of getting the related value of y.

Of course, a dependent variable may depend on several
variable quantities, not just one. If, for example, we’re
climbing a hill we might go a distance x towards the
East and then a distance y towards the North, arriving
at a height z above the level we started from. And in
that case we would write

z = f(x, y). (1.3)

This equation will describe the surface of the hill: if you
start from a point with coordinates (X, Y ) and walk
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only in the East-West direction, keeping the value of y
constant at y = Y , your height will be described by
z = f(x, Y ) – a function of the single variable x; but if
you go only in the North-South direction, with x hav-
ing the constant value x = X, then your path will be
described by the function z = f(X, y) – with y as the
only independent variable.

First, however, we’ll be talking only about functions of
a single variable, so we won’t allow both x and y to vary
at the same time; and we’ll call the dependent variable
y, as usual, not z.

1.2 Some simple functions – and

what they look like

-

6

y = x2

x

y

Figure 2

-

6

y = 1/x

x

y

Figure 3
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Often the relationship between two quantities can be
represented by a simple formula such as (1.1). This is a
special case of

y = f(x) = cxn, (1.4)

in which the independent and dependent variables have
been called x and y and n has been given the value
n = 2). We can picture the relationship by drawing a
graph as in Section 1.1. Marking the points (x, y) for
corresponding values of x and y and joining them by a
smooth curve is called “plotting the curve”.

The result is shown in Fig.2. This curve is called a
parabola: it starts from y = 0 at x = 0 and rises
smoothly to larger and larger values, without limit, as
x increases. We say “y tends to infinity as x tends to
infinity” or, in symbols, y → ∞ as x → ∞. When
the independent variable is a time, x = t as in (1.1), the
‘branch’ corresponding to positive values of t is the right-
hand half of the parabola: the other half, on the left,
corresponds to negative x values and the whole curve is
symmetric across the y-axis, since the value of y = x2

is unchanged if we use −x instead of x. We also say
the curve describes an even function of x, since it de-
pends only on an even power (n = 2) of the independent
variable.

If instead we take n = −1 we get the curve shown in
Fig.3. The function y = cx−1 = c/x describes a hyper-
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bola: as x gets bigger and bigger y does the opposite.
In symbols, y → 0 as x → ∞. But as x → 0 something
very special happens: y → ∞ but in such a way that
the curve becomes closer and closer to the vertical line
x = 0 (i.e. the y-axis). The hyperbola has an asymp-
tote at x = 0. On going to negative values of x, we see
there is a singularity (a very special point) at x = 0;
there the curve breaks into two separate branches, the
part for x negative (but with |x| > 0) being just like
the positive branch, but reflected across both the axes.
Both the positive and negative branches also have hor-
izontal asymptotes, where they come closer and closer
to the x-axis. The whole curve represents an odd func-
tion of x, arising from the odd power (n = −1) of the
independent variable.

The functions plotted in Figs.2 and 3 introduce two
other important ideas. Away from any singular points
there may be, they are both continuous : however close
two x-values become, the related y-values also become
indefinitely close – there are no ‘breaks’ or ‘jumps’ in
continuous curves. Also, both functions are single-valued :
if we are given the value of x then the function defines
only one related value of the dependent variable y. Most
of the time, in Science, we’ll be talking about continu-
ous and single-valued functions, but it’s important to
note that they may be defined only for a certain range
of values of the independent variable: if those values lie
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only between x = a and x = b we say f(x) is continuous
and single-valued “in the interval (a, b)”.

In Book 1, we met quite a number of important func-
tions, which we come across again and again in all parts
of Science: we need to know what to call them.

1.3 The naming of functions

There are two main kinds of function. Those described
by a rule (a formula or equation) which involves only
a finite number of ‘elementary’ operations like adding
and multiplying (which includes raising to a power, xn

where n is an integer) are called algebraic functions.
All other functional relationships, those which are not

algebraic, are called transcendental functions – they
go ‘beyond’ or ‘above’ those of algebraic form.

An example of the first kind is the relationship resulting
from the equation x2 + 3xy + y3 = 0: it determines
a value of y for any given values of x, even though it
doesn’t give a simple expression for y = f(x), with y
on one side of the = sign but not on the other. We say
it gives “y as an an implicit function of x”, whereas
y = f(x) gives y as an explicit function of x when the
formula can actually be found.

The second kind of relationship (transcendental) includes
all those which involve an infinite number of elementary
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operations, usually they arise from some kind of limiting

process (Book 1, Chapter 4) in which the value of y is
approached more and more closely, by taking more and
more x-dependent terms. In Books 1 and 2 we already
met functions like exp x, sin x, cos x, which are of this
kind. And again, in addition to those of explicit form,
we may meet transcendental functions of implicit form,
in which the equation defining the relationship contains
a mixture of x-dependent and y-dependent terms.

Because implicitly defined functions are less common
than the others and are harder to deal with in terms
of what we know already, we’ll mostly be talking about
explicit algebraic functions; and sometimes explicit tran-
scendental functions.

What kinds of algebraic function can we expect? An
example helps: the relationships

(i) x2 + 3xy − 4y = 0, and (ii) x4 + 2x2y2 − 3y2 = 0,

are both algebraic, but are implicit. Both equations can
be solved to give the explicit forms:

(i) y =
x2

4 − 3x
, (ii) y =

x2

√
3 − 2x2

.

The first expresses y in terms of x using only a finite
number of elementary operations (additions, multiplica-
tions, and their inverses – subtraction and division): it is
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called a rational algebraic function. Such functions
can always be expressed in the form y = f(x)/F (x),
where f(x) and F (x) are both polynomials of the form
a0 + a1x + a2x

2 + . . . + anxn; it is a rational integral

function. The second result (ii) is not of rational inte-

gral form because it involves the operation of taking a
square root – and that is a fractional power. (It is pos-
sible to imagine algebraic functions that don’t fit into
any of these types but we’ll have no use for them.)

As for the transcendental functions, the most important
one we’ve already met is the exponential function. It
is defined by an infinite series, see Section 5.1 of Book
1, and is usually denoted by y = f(x) = exp(x):

y = exp(x) = 1 + x +
x2

2!
+

x3

3!
+ . . . , (1.5)

which is the sum of an infinite number of terms, each
of the form xn/n! (n!, ‘factorial n’, being the product of
the first n positive integers).

The behaviour of this function, also denoted by y = ex,
is shown in Fig.4. Its value increases smoothly as x goes
from −∞ to +∞, the curve crossing the y-axis at the
point where x = 0, y = 1.

Two other important examples are the ‘sine’ and ‘cosine’

14



functions (Chapter 4 of Book 1), defined by

cos(x) = 1− x2

2!
+

x4

4!
− ... , sin(x) = x− x3

3!
+

x5

5!
− ... .

(1.6)

-

6

y = exp(x)

x

y

Figure 4

-

6

y = sin(x)

x

y

Figure 5

These functions relate the sine and cosine of an angle
x, as defined in geometry (Book 2 Section 3.2), to the
angle itself, expressed in radians. Both functions are
bounded, y having an upper limit +1 and a lower limit
−1, and are periodic, the same cycle of values repeating
over and over again when x increases by 2π radians (360
degrees), The sine of x is shown in Fig.5: the cosine
looks exactly the same but the curve is pushed through
π radians along the x-axis.
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1.4 Turning it round – inverse

functions

The function y = f(x), once it is written down as a for-
mula, will give us the value of y that goes with any value
we may choose for x: but what if we want to turn the
question round and ask “What is the value of x that,
when put in the formula, will give some chosen value
of y? That’s a very different question because the “in-
dependent variable” (the one we choose) has now been
called y instead of x; and we may not have a formula that
will give us the answer. Let’s start with a case where
we do know the answer: the function y = f(x) = x2.
The new function, which gives x in terms of y, can be
written x = g(y) to show that it’s different from the one
that works by squaring the variable. But in this case we
already know the rule for getting x from a given value
of y: the two formulas we need are

y = f(x) = x2; x = g(y) =
√

y, (1.7)

where the second one is just the definition of what we
mean by the “square root” of y – it’s the number that,
when squared, gives us the number x in the first formula
(see Book 1, Section 4.2).
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-

6

x =
√

y

y

x

Figure 6

-

6

x = log(y)

y

x

Figure 7

If we’re using the graph to express y in terms of x, there’s
no problem; because any point on the curve tells us both
(i) the value of y that goes with a given x, or (ii) the
value of x that goes with a given y. But since we’ve
always agreed that the independent variable is plotted
along the horizontal axis, and the dependent variable
along the vertical axis, we’ll need to swap the two axes.
The function y = x2 shown in Fig.2 will then look like
Fig.6, where values of y are plotted horizontally and
those of x vertically.

Let’s note, however, that the inverse of a function may
have very different properties from the one we start
from. One value of y = x2 arises from two different
values of the independent variable, x and −x. So x =
±√

y is a two-valued function of y (taken as the positive
square root).
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The function g(y) =
√

y can also be written as g(x) =√
x because it doesn’t matter what name we give to the

variable – it’s often just called the argument of the
function. In this case, g(x) is called the inverse of the
function f(x) = x2. And similarly when y = f(x) = xn,
the inverse function g(x) is called the “nth root” of x
and is written g(x) = n

√
x.

In most cases, however, the formula for the inverse of
a function is not known or can be hard to find. For
example, the exponential function whose graph is shown
in Fig.4 has an inverse function called the logarithm
defined so that

When y = f(x) = exp x then x = g(y) = log y.
(1.8)

And in this case, though it’s easy enough to change the
axes round in Fig.4 to get the function shown in Fig.7,
it’s much harder to find a mathematical rule for getting
the inverse of the function defined by the series in (1.5):
for that means finding a formula for x, on the right in
equation (1.5), in terms of y on the left.

Note that with named functions, like exp(x), sin(x), etc.,
we usually leave out the brackets (‘parentheses’) round
the variable x: instead of exp(x), for example, we just
write exp x; and we’ll do this from now on. The round
brackets are useful when the argument of the function
is itself a big expression (e.g. (3x2 + 5) instead of just
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x).

Many functions and their inverses arise when we try to
solve problems that we meet in Science. For example, if
the variable y (let’s call it N) measures the number of
male/female couples in a population of flies (or rabbits,
or people) after n generations, the law of exponential
growth has the general form

N = N0 exp(cn), (1.9)

where N0 is the number when you start counting and c
is a constant which is bigger the faster they reproduce.
The number n is a measure of time (the number of ‘aver-
age life-spans’ – which you might want to translate into
years, for a human being, or days, for a fly). Fig.4 shows
how fast the population grows (positive values of the ar-
gument cn). The population of the world is now roughly
10 thousand times what it was a thousand years ago. Of
course, (1.9) gives the growth only if there are no restric-
tions: it applies for a simple ‘model’ in which we don’t
allow for death and disease. If we change the sign of
the constant c in (1.9) the population N0 will be reduced

in every generation: the negative branch of the curve
will then represent the law of exponential decay. In
any real population the growth or decay will depend on
many factors and one of the most important questions
for humanity is how to make sure that the population of
the world is sustainable – without depending on disease
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and death, starvation and wars, to hold it back.

Exercises

1) Plot the curve y = x2 for values of x going from −5 to
+5. Then do the same for y = x2+2 and for y = 2x2+2.
If you take instead the function y = px2 + q, p and q be-
ing numbers with any values you choose (i.e.‘arbitrary’
values), you get a curve something like the one in Fig.2,
but try to describe how it will be changed.

2) Plot the curve y = 1/x for x going from −1 to +1
in steps of 0.1. What happens when x is very close to
zero? Are there any singularities in this range and, if
so, for what values of x? Do the same for the function
y = 1/(x + 1

2
).

3) What name would you give to the function y =
x2/(4−3x)? By putting in a few values of x and getting
the corresponding values of y, make a rough drawing (a
‘sketch’) to show the shape of the curve. What happens
(i) when x becomes very big and (ii) when it has values
between 1.3 and 1.4 ? Are there any asymptotes and, if
so, show them in your sketch.

4) Now look at the function y = x2/
√

3 − 2x2 and make
a sketch to show how it behaves in the range from x = 0
to x =

√

3/2. What happens at the upper limit?

5) Calculate values of y = exp x for values x1 = 0.01
and x2 = 0.02, from the series (1.5), using only the first
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four terms. Verify that the corresponding values of y
are related by y1 × y2 ≈ y3, where y3 = exp(x1 + x2).

6) When y = exp x = ex, x is said to be the “logarithm
of y to the base e”. How can you describe the results in
Exercise 5 in terms of logarithms?

7) Try to calculate the value of the fraction y = f(x) =
(x2 − 4)/(x − 2) when |x|, the modulus of x (its value
without the ± sign), is close to 2. Note that the result
begins to look like 0/0, which is said to be indetermi-

nate; but your values will suggest that this ratio gets
closer and closer to 4 – we say it “tends to the limit 4”.
Show that by writing (x2 − 4) = (x + 2)(x− 2) you can
prove that this value is the exact limit at x = 2. We
write

limx→2

[

(x2 − 4)

(x − 2)

]

= 2 + x = 4.

8) The fraction in Exercise 7 approaches a limit also
when x becomes as large as we please (indefinitely large,
or ‘infinite’). Show that the limiting value is x and is
therefore also indefinitely large.

9) Show that the fraction y = (2x2 + 5)/(x2 + 3x) ap-
proaches the finite limit y = 2 as x → ∞. (The symbol
∞ stands for “infinity”.) In this case then

limx→∞

[

(2x2 + 5)

(x2 + 3x)

]

= 2.
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10) Use the first few terms in the series that define y =
sin x and y = cos x, given in (1.6) of this Chapter, to
find the limits as x → 0 of the following functions:

• (a) y = (sin x)/x

• (b) y = (1 − cos x)/x2

• (c) y = (cos ax − 1)/x2 (a = constant)

• (d) y = (x cos x − x)/x3

• (e) y = x sin x + cos x
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Chapter 2

Calculus – what’s it all
about?

2.1 Velocity of a falling body

In the last Chapter we were talking about the relation-
ship between two variable quantities, one (the dependent
variable) being determined by the value of the other (the
independent variable). For example, the velocity v of a
falling object depends on the time t (i.e. on how long
it’s been falling). We can use this simple example to
introduce the main ideas of the branch of Mathematics
usually called just ‘the calculus’, of which there are two
kinds – the differential calculus and the integral cal-
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culus. The first is about rates of change; if we use x, y
to stand for the dependent and independent variable,
how fast does y change when we make small changes
in x? The second is about how the small changes in
y, made one after another, can be added up – or “inte-
grated” – to get the total change in y resulting from a
big change in x.

The relationship between s, the distance gone by a falling
pebble (starting from rest), and t, the time taken, is
‘parabolic’ as in Fig.2; but only the positive branch of
the curve is needed (time after the start being counted
positive). The curve is continuous, and s goes on in-
creasing faster and faster as t increases (i.e. as time
passes). As an equation,

s = s(t) = ct2 (2.1)

When we say “faster and faster” this brings in the idea
of velocity (or ‘speed’ if you need only its magnitude).
If the speed increases by an amount a in the first second,
and by the same amount in the next second, and so on,
we say the pebble is moving with ‘constant accelera-
tion a’ and that v is proportional to t: if you double t
then v will also be doubled. As an equation,

v = v(t) ∝ t = at. (2.2)

The two relationships (distance/time and velocity/time)
are shown in Figs. 8 and 9.
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The ‘proportionality constant’ a, in (2.2) has the value

a = constant ≈ 9.81 m s−2. (2.3)

(Note that if you put t = 1 s in (2.2) you find: velocity
after 1 s = (9.81 m s−2) × (1 s) = 9.81 m s−1 – so the
units are all OK.)

The last two equations say nearly all we need to know
about falling bodies and we’ll be using them a lot. The
important thing about a is that its value is roughly the
same for dropping things of any kind, anywhere on the
surface of the Earth! More about all this in Book 4 –
here we we only want to study the mathematics.

Now look at the graph for v = v(t), Fig.9, which is a
straight line passing through the origin: it shows v as
a linear function of t. The slope of the line is a = v/t,
the increase in velocity (plotted in the ‘up’ direction)
divided by the increase in time (plotted in the ‘left-right’
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direction). It’s just as if you were going up a hill: the
slope measures the steepness of the hill. (We used slopes
quite a lot in geometry, in Book 2.)

We now have three formulas: (i) s = ct2, (ii) v = at,
(iii) a = constant. How are they connected?

What happens as the time t increases by a little bit
δt? (Remember that the Greek letter δ isn’t something
multiplying t – it’s short for “a little bit of”.) So the
time goes from t to t + δt, and v goes from v to v + δv
as in Fig.10:
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The constant a, which we’ve called the “acceleration”,
is the rate of change of v, with respect to t; it is the slope

(v/t) of the straight line in Fig.10.

The distance fallen s also increases a bit; because some-
thing moving with velocity v will go a distance v×δt dur-
ing the small time interval δt. Here we’ll use the value
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v = v(t) at the beginning of the interval because it’s not
going to change much in such a small time change. To
summarize, then:

When the time increases from t to t + δt,

v goes to v + δv, where δv = aδt (a being
the slope of the v-curve)

s goes to s + δs, where δs ≈ vδt - and so δs,
the extra distance gone during the interval
δt, is roughly the area of a small rectangle
of height v and width δt.

Now draw vertical lines up from the t-axis to meet the
curve v = v(t) in neighbouring points, like (t1, v1), (t2, v2), (t3, v3)
in Fig.11. Along with the increases in velocity

δv1 = aδt1, δv2 = aδt2, δv3 = aδt3,

there are corresponding increases in distance gone; and
these are approximated by

δs1 = v1δt1, δs2 = v2δt2, ....

which are represented by the areas of the shaded rect-
angles in Fig.11.

You can see what’s coming. We divide the whole time
from t = 0 up to t = T , say, when the pebble hits
the ground, into small intervals δt: and then the total
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distance fallen in time T will be represented by the sum

of the areas of all the strips, like those in Fig.11, between
the limits t = 0 and t = T . As you can see in Fig.12,
this is very nearly the same as the area of a triangle that
holds all the strips; and this area is just half the area of
the rectangular box whose horizontal and vertical sides
have lengths T and V .
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Since V = aT we can get a formula for the total distance
fallen in time T :

Total distance gone = 1
2
(T × V ) = 1

2
aT 2. (2.4)

This result shows us why the constant in (2.1) is different
from that in (2.2): in fact, c = 1

2
a.

Two things have to be said. First, the falling stone
is only an example and what we’ve done can be done
just as well for any relationship y = f(x) between two
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variable quantities – even when the slope of the curve
(a) is not constant, giving you a real curve as in Fig.13
instead of a straight line. And, second, the results are
approximate only because we considered small changes
δt – but not very, very small, or “infinitesimal” changes:
if we make the steps small enough the results can be
made as accurate as we please, becoming exact ‘in the
limit as δt → 0’. In the next Section we’ll analyse these
ideas of large and small, and limits, more carefully.

But before starting on ‘mathematical analysis’ let’s sum-
marize what we’ve done using only graphs and pictorial
ideas. For any function y = F (x), there is a rate of
change of the dependent variable y, with respect to a
change δx in the independent variable x; and this is the
slope of the curve at the point (x, y) we’re looking at –
not exactly at the point, but in the small interval as the
independent variable goes from x to x + δx.

In the example, the function we’re now calling F gave
the distance s in terms of the time t; and the rate of
change of s with respect to t, the slope of the F -curve,
was called the velocity. If we use the same word for the
‘velocity of change’, we can write v = f(x), noting that
v is no longer a linear function (as it was in the case of
constant acceleration) but depends on which part of the
curve we look at. So in general we’re interested in two
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functions of the independent variable x, namely

y = F (x), v = f(x) = (slope of F (x) at point x)
(2.5)

And in the last two Figures we’ve seen how the area un-
der a curve such as v = f(x), between two limits x = 0
and x = X (using X to mean the upper limit of x),
could be used to find the function y = F (x). This is
a marvellous result –because it means that, just as we
can get the function f(x) as the slope of the function
F (x), we can get F (x) from a well-defined area under
the other function f(x). In other words, we have found
a way of passing from one function to the other in either

direction: finding the slope of a function is called ‘differ-
entiating’ and leads to the differential calculus, while
finding the area is called ‘integrating’ (putting together
all the strips in Figs.12 or 13 to get the whole) and leads
to the integral calculus. Very often the two branches
of the calculus are studied separately; but they’re really
just ‘different sides of the coin’, integration being sim-
ply the inverse of differentiation. We look at them both
together in the next two Sections.
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2.2 Infinitely large and infinitely

small – limits

There are three main branches of Mathematics. The
first started with ideas about number and the use of
symbols in arithmetic and algebra: it was developed
quite a lot in Book 1. The second deals with ideas
about space and geometry; it was taken quite a long
way in Book 2. Both these branches had their origins in
ancient times, so by now they are thousands of years old.
But the third main branch, is much more recent; it be-
gan to develop only about three hundred years ago and
is called Mathematical Analysis. It deals with many of
the things we know something about already (e.g. the
‘infinite series’ we used in Book 1 to define numbers
which couldn’t be defined using only a finite number of
‘elementary operations’, such as multiplication and divi-
sion); but it does so in a much more careful and precise
way. In the last Section, we were thinking about ‘infinite
processes’: for example, the rate of change of y = f(x)
was defined ‘at a point’ on the curve by looking at the
slope of the curve in an interval whose end points became
‘infinitely close together’ – the infinite process being that
of letting a small element of the curve shrink to a point;
and another example was the division of an area into
an indefinitely large number of infinitely narrow strips.
These infinite processes are different from the ones we

31



looked at in Book 1 (e.g. Chapter 5) because they deal
with functions, not just with sequences of numbers. We
also came across the idea of a limit, as the number to
which the sum of a series of n terms can get as near as
we please when n becomes larger and larger – without
ever getting there! An example was the decimal number
0.1 + 0.01 + 0.001 + 0.0001 + 0.00001 + ... = 0.11111 ...
representing the rational fraction 1/9; it gets closer and
closer to the limit, but to get there you need the ‘sum
to infinity’ where the series is never-ending.

The first kind of infinite process we’re going to talk
about in this Section is the calculation of the slope of a
curve at the point P with coordinates (x, y).
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In Fig.14 we can define the average slope of the curve in
the interval PQ as the fraction ∆y/∆x (distance ‘up’,
divided by distance ‘on’); but that’s not the same as
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the slope “at point P”. (Note that the end-points of the
curve are shown as (x0, y0) and (X, Y ), just as P is (x, y);
while Q has coordinates (x + ∆x, y + ∆y)) Fig.14 gives
us the idea of the rate of change of y as x increases –
as the slope of a line – but that’s all! In mathematical
analysis we work with the numerical ratios ∆y/∆x and
ask how they change as we look at smaller and smaller
intervals. When ∆x and ∆y are finite (and in Fig.14
they are quite big) their ratio is only approximately the
slope of the curve at the point P – it’s what we’ve called
the ‘average’ rate of change: what we really want is the
slope of the line that just touches the curve at point P,
which is called the tangent at P. But we’re not going to
get it by putting a ruler against the curve and making
measurements: we’re going to use only arithmetic.

We start by using very very small changes, calling them
δx and δy instead of ∆x and ∆y, and get the ratio δy/δx
by actually doing the division. But we soon run into
trouble as δx gets smaller and smaller. Take an example
like y = x2, at the point where x = 6, y = 6 × 6 =
36. First make a small change δx = 0.01 and calculate
the value of y at the new point where the x-value is
x+δx = 6.01. The new y-value will be y+δy = (6.01)2 =
36.1201, so the increase δy will be 0.1201 and the ratio
δy/δx will be 0.1201/0.01 = 12.01.

Next let’s take δx = 0.001, so as to get a value of δy/δx
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very close to the point x = 6, y = 36. The result will be

δy

δx
=

36.012001 − 36.000000

0.001
=

0.012001

0.001
= 12.001,

which seems to be almost exactly 12. If we go on long
enough we’ll find values closer and closer to 12; but to
get them we have to calculate the function y = x2 more
and more accurately (we’re already going to 6 figures
after the decimal point) and then divide a δy that’s al-
most 0 by a δx that’s also close to zero. We’re looking
for a limit, in this case 12, which would seem to be close
to 0/0 and this is nonsense. There must be a better way
of getting it!

Another infinite process we met in the last Section is
the evaluation of an area under a curve by dividing it
into narrow strips: Fig.15 will remind you of the prob-
lem. The whole area we want to find, let’s call it A, is
bounded by the curve, the x-axis and the verticals at
x0 and x. In the Figure it is shown divided into strips;
and if the strip of height y has a width δx (we’re talking
about any strip) then it has an area of approximately
δA = y×δx – not exactly, because the top side is curved.
As we’ve already noted, the approximation gets better
and better as we use thinner strips and take many more
of them: we’ll get the correct limit exactly only if we
take an infinite number of infinitely thin strips – but we
don’t yet know how to do it!
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What we can say is that, if we add one more strip to
the last one on the right, the area A will increase by δA;
so we know the rate of increase of the area as the upper
boundary moves – as x → x + δx. It is the ratio δA/δx,
and for the curve y = x2 this becomes

δA

δx
=

yδx

δx
= y = x2

– which is an exact result, the δx in the numerator being
cancelled exactly by the δx in the denominator.

To summarize: The area shown is a function of x, the
position of the upper boundary, and in symbols

A = A(x), δA/δx = f(x).

In other words: for any given function y = f(x), we may
not know the corresponding area-function A(x), but we
do know the slope of the curve A = A(x) at any point
(x, y).

In the next Section we come to the general question of
how to calculate slopes and areas exactly – which is a
central problem of the Calculus.
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2.3 Derivatives, integrals – and

how to find them

In the last Section we discovered that getting the slope
of a curve at a given point, as the limit of a ratio δy/δx,
was not so easy: as δx and δy both tend to zero it is not
clear what their ratio will tend to, since 0 divided by 0
doesn’t mean anything.

To get round this difficulty, let’s use the same example
y = f(x) = x2 but simplify the fraction δy/δx by ex-
pressing δy in terms of δx and seeing if anything will
cancel. In this way we can get a result by using simple
algebra, before we start doing any arithmetic.

When ∆x and ∆y in Fig.14 are replaced by the much
smaller steps δx and δy, the y-coordinate of the upper
point (Q) on the curve will become

y+δy = (x+δx)2 = (x+δx)×(x+δx) = x2+2xδx+δx2

and subtracting y (= x2) gives us the expression for δy:

δy = 2xδx + δx2.

If we now divide both sides by δx we find the ratio

δy

δx
= 2x + δx

and this is true however small δx may become!

36



So there is a finite limit as δx → 0 and it is 2x. We
write this result as

lim
δx→0

δy

δx
= 2x.

The limiting value of the ratio, which gives the slope of
the curve in Fig.14 at the point P (i.e. as Q comes closer
and closer), and is called the derivative at point P(x, y)
of the function y = f(x). It is usually written as dy/dx,
to make it look like a ratio; but we must remember that
it’s just the name (we read it as “d-y-d-x”) of a single

number – the limiting value of the ratio δy/δx. (You
may be wondering why the ‘d’ is written with a straight
back – in ‘Roman’ rather than the usual ‘italic’ type,
which is always used for numbers or quantities. It’s
again to make sure you don’t think of dx as a product
of d and x.)

In the last Section we found, for x = 6, the approximate
result dy/dx ≈ 12.001; but now we can say the exact

value is dy/dx = 2x = 12.

We can also write down a formula for finding the deriva-
tive dy/dx of any function y = f(x) by going through
the same steps – but without saying that the function is
really just y = x2. To get the numerator in the fraction
δy/δx, before going to the limit for δx → 0, we sim-
ply take the difference of two function values, value of
f(x + δx) (after the increase in x) minus value of f(x)
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(before the increase); and then we divide by the increase
δx itself. So

δy

δx
=

f(x + δx) − f(x)

δx

and then we go to the limit x → 0 to get the single
number dy/dx. So

dy

dx
= lim

δx→0

δy

δx
= lim

δx→0

f(x + δx) − f(x)

δx
(2.6)

and that’s how we differentiate, or “find the derivative
of”, any function whatever!

Now let’s turn to the other infinite process we want to
study – that of finding the area under a curve by dividing
it into a large number of thin strips. To find the area we
have to integrate the function y = f(x), represented
by the curve, and the result is called the integral of the
function. More correctly, because the area depends on
where we put the upper and lower boundaries (let’s call
them x = X and x = x0 as in Fig.15), it is the definite
integral from x = x0 to x = X.

To get the area we can start with strips all of width ∆,
the first going from x = 0 to x1 = ∆, the next from
x1 = ∆ to x2 = 2∆, and so on until we get to the
last at X = N∆. For a linear function y = f(x) = x,
like that in Fig.11, the corresponding y values will be
y1 = x1, y2 = x2, ... yN = X; and the sum of the areas
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of all the N strips will be

SN = y1∆ + y2∆ + ... yN∆ = (1 + 2 + 3 + ... N)∆2

Now we know from Book 1 how to evaluate a series like
this. We write it out again, in reverse order, so

SN = (N + (N − 1) + (N − 2) + ... 1)∆2

and add the two series together to get 2SN = N × (N +
1) (since there are N terms, each with the same value
(N + 1). The total area is thus

SN = 1
2
N(N + 1)∆2 (2.7)

and we can see how it depends on the number of strips
we’ve used.

What we need is the limit of (2.7) as N becomes in-
finitely large and the strips infinitely narrow. And we
can get it in terms of the x-value marking the top bound-
ary, because X = N∆ and therefore ∆ depends on the
number of strips: ∆ = X/N . If we put this result in
(2.7) we find

SN = 1
2
N(N + 1)(X2/N2) = 1

2
X2

(

1 + 1
N

)

. (2.8)

It’s now clear that for N → ∞, SN → 1
2
X2. This limit

of the sum is the exact area under the curve between
the boundaries at x = 0 and x = X: it is the required
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integral of the function y = f(x), from x = 0 to x = X
and we write

y = f(x) = x,

∫ X

0

f(x)dx = 1
2
X2. (2.9)

Of course, there’s nothing special about the upper bound-
ary x = X; or about the name that we use for the inde-
pendent variable – we could just as well use t instead of
x. So the integral in (2.9) can equally be written as

∫ x

0

f(t)dt.

When defined in this way it is known as the ‘indefinite’
integral of f(x), usually written

∫

f(x)dx. But more of
this later!

The symbol
∫

in (2.9) is a ‘long S’, a ‘stretched out’ S,
meaning the limit of the ‘Sum’, and the dx is to remind
us that we are integrating ‘with respect to x’ by divid-
ing the whole area into strips of ‘infinitesimal width’;
the 0 and the X indicate the ‘range’ of the integration,
from 0 at the bottom to X at the top. This is the nota-
tion nearly always used nowadays; but, as we noted at
the end of Section 3.1, integration is really the inverse

of differentiation – so we could use the symbol D, for
example, for the operation of differentiating, and D

−1

for the inverse operation of integrating. We’ll say more
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about this in later Chapters, but the general idea is that
if two functions f(x) and F (x) are related by

f(x) =
dF

dx
, F (x) =

∫

f(x)dx, (2.10)

then we can just as well write

f(x) = DF (x), F (x) = D
−1f(x). (2.11)

While we’re talking about notation, we should make a
short list of things we’re going to use later:

• Differentials In defining the derivative of a func-
tion y = f(x), we said that dy/dx was a single
number (the limit of a ratio) and not the ratio of
two different numbers, dy and dx. But (as long as
we’re careful!) we can use the symbols dx and dy
separately, calling them differentials.

At the very beginning of this Section we used the
example y = f(x) = x2, finding that when x in-
creased by an amount δx the corresponding change
in y was δy = 2xδx + δx2. The rate of increase of
y with x, close to the point (x, y), was thus

δy

δx
= 2x + δxa

and dy/dx at the point (x, y) was defined as the
limit of this ratio:

dy

dx
= lim

δx→0

δy

δx
= 2x.
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If we now use dx as a new name for the small
increase δx, calling it a “differential”, it follows
that

δy =
dy

dx
dx + dx2.

In other words, the actual increase in y will be
δy = (dy/dx)dx+dx2. This is why, in older books,
the derivative dy/dx is often called a “first differ-
ential coefficient” – meaning that, when δy is ex-
pressed in terms of powers of dx, then dy/dx is
the first coefficient in the expansion.

The differential dy is defined simply by knocking
off all terms in the expansion after the first. With
this definition we can write

dy = (dy/dx)dx (2.12)

and if we divide both sides of the equation by dx it
follows that the derivative dy/dx (single number)
can be written as the ratio of two differentials, dy
divided by dx:

dy ÷ dx = (dy/dx) (2.13)

- where the division symbol (÷) is used to show
that the quantity on the left is really a ratio of
two small quantities, rather than the differential
coefficient (dy/dx). But remember (2.13) follows
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from the way we defined dy; and that, however
small we take dx, the differential dy will not be
exactly equal to the corresponding change (δy) in
y. We’ll find many examples of how useful it can
be to work with differentials.

• Repeated derivatives At the end of Section 3.1,
the symbol D was used to mean the operation “dif-
ferentiate with respect to x”, so that

Dy = Df(x) =
dy

dx

is just another notation for the derivative of a func-
tion. But since, in general, the derivative of f(x)
is another function of x (often denoted by f ′(x))
we can differentiate a second time, obtaining

DDy = DDf(x) = Df ′(x) = f ′′(x)

– yet another function of x, which is called the
second derivative of f(x). And the process can
be continued to obtain still higher derivatives.

If we use the original notation for differentiating,
putting (d/dx) in place of D, this last equation
becomes

d

dx

d

dx
f(x) =

d

dx
f ′(x) = f ′′(x)
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and this can be put in shorter form by writing

d

dx

d

dx
f(x) =

d2

dx2 f(x) = f ′′(x). (2.14)

This is the notation we usually use for second
derivatives: it corresponds to taking the ‘square’
of the basic operation d/dx and an ‘nth derivative’
can be denoted in a similar way by

D
ny =

dny

dxn
.

The second derivative is specially important: it
means the “rate of increase of the slope of f(x)
at the point (x,y)” and if its value is zero then
the curve of y against x has ‘flattened out’ at that
point. The second derivative thus gives us a way
of finding if a function has reached a maximum
(biggest value), a minimum (smallest value), or
at least a turning point (where the curve is nei-
ther at a maximum or a minimum, but is ‘flat’
or ‘stationary’). This kind of information is very
important in many applications of mathematical
analysis, as we’ll find later.

In the next Chapter we start making a collection of
derivatives and integrals of some of the ‘standard’ func-
tions we need most. But before doing that let’s think
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about how we can use them: we can’t make a collection
big enough to include all the functions we might want
to deal with – for there would be no end to it! On the
other hand, if we know the derivatives and integrals for
just a small list of functions then we can ask how our
results can be combined.

2.4 Building up to bigger things

Suppose we have made a list of standard functions, u =
u(x), v = v(x), ... and their derivatives with respect
to the variable x, du/dx = u′(x), dv/dx = v′(x), ... .
Notice that we’re using the shorthand notation u′(x)
to mean the new function we get when we differentiate
u(x); and similarly for v(x).

To build up to more complicated functions, we might
start by simply adding two functions from the list, to
get the new function f(x) = u(x) + v(x); or we could
multiply any function by a constant number c, taking
f(x) = cu(x); or we could multiply u(x) and v(x) by
numbers a and b and then add them, getting f(x) =
au(x) + bv(x). And in each case we’ll want to get the
corresponding derivative f ′(x) = df/dx.

Another thing we might want to look at is the product

of two function from our list, taking f(x) = u(x)v(x)
and again asking how we can get its derivative f ′(x).
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Finally, we may want to study a function of a new vari-

able v = v(x), taking f(x) = u(v) – which is certainly a
function of x alone, since it is obtained by putting the
variable v (in place of x) into the formula which defines
u(x).

We’ll deal, in turn, with each of these three building
methods: (i) differentiating a sum, (ii) differentiating a
product, and (iii) differentiating a ‘function of a func-
tion’. All three methods will be used over and over again
in this book and many others, so it’s important to learn
how to use them.

(i) Differentiating a sum; y = u + v

Let’s start from the definition of dy/dx in equation (2.6):

dy

dx
= lim

δx→0

δy

δx
= lim

δx→0

f(x + δx) − f(x)

δx
, (2.15)

which is good for any function y = f(x). The deriva-
tive of u(x) follows on replacing y by u in (2.15) and is
therefore

du

dx
= lim

δx→0

δu

δx
= lim

δx→0

u(x + δx) − u(x)

δx
, (2.16)

while in the same way we have

dv

dx
= lim

δx→0

δv

δx
= lim

δx→0

v(x + δx) − v(x)

δx
. (2.17)
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Now put f(x) = u(x) + v(x) into the last term of (2.12)
to get

f(x + δx) − f(x)

δx
=

u(x + δx) − u(x)

δx
+

v(x + δx) − v(x)

δx
,

noting that the function f(...) is the sum of the two parts
u(...) and v(...), whether the three dots (the argument
of the function) stand for x + δx or x. Then go to the
limit δx → 0 in each of the three terms: the first one,
from (2.15), gives you dy/dx; the next one gives du/dx –
from (2.16) – and the last one gives dv/dx – from (2.16).
In other words,

dy

dx
=

du

dx
+

dv

dx
(2.18)

– the derivative of a sum is the sum of the deriva-
tives.

Now look at a more general function, f(x) = au(x) +
bv(x), where a, b are just constants, and go through the
same kind of reasoning. You’ll find

y = au + bv :
dy

dx
= a

du

dx
+ b

dv

dx
. (2.19)

The operation of differentiating is said to be linear:
when applied to a sum of two or more functions it gives
the sum of the results obtained by treating each function
separately.

(ii) Differentiating a product; y = uv
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Again we can use the definitions in (2.15), (2.16), and
(2.17); but now, instead of y = f(x) = u(x) + v(x), we
have y = f(x) = u(x) × v(x). So when x increases by
δx the function u(x) will change to u(x + δx) and v(x)
will change to v(x + δx). The fraction

f(x + δx) − f(x)

δx

will then become

u(x + δx)v(x + δx) − u(x)v(x)

δx

and we can make this look simpler by remembering that
u(x + δx) just means the increased value of u(x), after
the change x → x + δx – which we have called u + δu;
and similarly v(x + δx) just means v + δv.

The fraction can then be written more briefly as

(u + δu)(v + δv) − uv

δx
=

(uδv + vδu + δuδv)

δx
,

where we’ve just multiplied out the product in the nu-
merator and subtracted the term uv. So the fraction
whose limit we are going to look for is a sum of three
terms:

u
δv

δx
, v

δu

δx
,

δuδv

δx
. (2.20)
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When we go to the limit as δx → 0, the first and second
terms together give us

u
dv

dx
+ v

du

dx

– where we’ve used the definitions in (2.16) and (2.17).
But the third term gives

lim
δx→0

δuδv

δx

and this can be written as either

du

dx
δv, or δu

dv

dx
.

In either case, the result contains a factor (δv or δu) –
which must tend to zero as δx → 0, since the ratio δv/δx
or δu/δx is a finite number. So we can forget about the
third term in (2.20) and keep only the first two. In the
limit, then, we are left with

dy

dx
= u

dv

dx
+ v

du

dx
. (2.21)

To summarize: If we know the derivatives of two func-
tions we can write down the derivative of their product;
it is the first function times the derivative of the second
plus the second function times the derivative of the first.
Note also that if one of the functions is just a constant
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(e.g. u = c, so y = cv) there will be only one term, since
dc/dx = 0: thus, for y = cv, dy/dx = cdv/dx – the
differentiation doesn’t touch the constant factor.

(iii) differentiating a ‘function of a function’; y =
f(u), u = u(x)

Now suppose we think of f(u) as a function of the vari-
able x – which it must be, because u has one value (and
one value only) for any chosen value of x and that value
therefore determines y = f(u) = g(x). Notice that we’ve
given the function (the ‘rule’ for getting the value of y)
a new name, writing it g(x), because it’s not the same
rule used in getting y = f(u). Often the name of the
thing we’re calculating is also used as the function name,
putting y = y(x) and depending on the x or the u to tell
us which function we’re thinking of; sometimes that’s
good enough, but here we have to be more careful or
we’ll get mixed up.

If x goes to x + δx, u will change to u + δu and we can
define du/dx as the limit of the ratio δu/δx. We can
also define dy/du as the limit of a ratio δy/δu; but what
we want is dy/dx – the rate of change of y with respect
to x, not u. How can we get it? We must use a trick,
thinking first of the small, but finite, changes before we
go to the limit.

As long as the changes are finite, the approximate rates
of change, δy/δu and δu/δx are simply fractions; so it
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is true that
δy

δu

δu

δx
=

δy

δx
,

since the factors δu in the numerator and the denomi-
nator on the left cancel. But now we can go to the limit
as δx, δu, δy all become indefinitely small. The two
sides of the equality stay equal but are now expressed
in terms of derivatives:

dy

dx
=

dy

du

du

dx
. (2.22)

This process, in which the function we really want, y =
g(x), is written more easily in terms of another variable
u, is usually called “changing the variable” or “substi-
tution” (of one variable in place of another). In later
chapters, and in the Exercises, we’ll find many exam-
ples of how it works.

With the three methods above, you can differentiate any
function you may be given – you’ll need nothing more!

Exercises

1) The function plotted in Fig.13 is in fact

y = 2 +
4x

3
− x2

9
.

Plot the curve for yourself, using any units you wish,
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with x going from 0 to 6 units (e.g. 1cm). Now look at
the same curve in Fig.14 and calculate

(i) the values of y at Point P, where x = 1, and Q, where
x = 4

(ii) show that the point (X, Y ), with X = Y = 6 also
lies on the curve

(iii) calculate the slope of the straight line PQ, connect-
ing P and Q, which is called a ‘chord’

2) Now find an approximate value of the slope of the
curve in Fig.14, at the point P, using the same method
as on p.18 (for the function y = x2). Compare this value
with that for the slope of the chord PQ – is it a good

approximation? Show that near the point (6,6), which
is a ‘maximum’ (highest point), the slope seems to be
zero.

3) Use the method explained in Section 2.3 to find the
derivatives of the functions (i) y = ax, (ii) y = bx2,
(iii) y = cx3 (a, b, c being constants). (Hint : use the
definition (2.6) of dy/dx.)

4) Use the results from the last Exercise, along with
(2.19), to find the derivative (dy/dx) of the function in
Exercise 1. Then use your expression to obtain exact

values of the slopes at points P, Q, and the end-point
(X, Y ).

5) Use the definition (2.6) to find the derivative of the
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function y = x−1. (Hint : use

δy =
1

x + δx
− 1

x

and bring the fractions to a common denominator x(x+
δx). Find δy/δx and then the limit of this ratio as δx →
0.)

6) Now find the derivative dy/dx of each of the following
functions

• y = x(1 − x) (Hint : This is a product of u = x
and v = (1 − x))

• y = (1 − x)2 (Hint : This is a function of u =
(1 − x))

• y = x(1 − x)2 (Hint : This is a product of results
you already have)

• y = x/(1 − ax) (Hint : Again a product of results
you already have)

• y = x/(1 + ax) (Hint : Again a product of results
you already know)

7) Show that if y = u/v (a quotient of two functions)
then

dy

dx
=

1

v2

(

v
du

dx
− u

dv

dx

)

.
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8) Now invent some functions of your own and make
sure you can find their derivatives.

9) In Section 2.4 we saw that the second derivative,
d2y/dx2, of a function y = f(x) could tell us a lot about
the form of the function. At a point where dy/dx = 0
the function has reached a turning point: if increas-
ing x leads to a decrease in the slope dy/dx then y has
reached a maximum value and is beginning to fall – the
turning point is the ‘top of the hill’ and d2y/dx2 is nega-

tive; but if dy/dx was already negative, before the turn-
ing point, and increasing x leads to an increase in the
slope, then d2y/dx2 is positive and the turning point
was the ‘bottom of a valley’. In summary,

dy

dx
= 0 and

d2y

dx2
= negative, y = maximum ;

dy

dx
= 0 and

d2y

dx2
= positive, y = minimum .

You’ll find a simple example of a curve showing both a
maximum and a minimum if you make a graph of the
function y = x(x − 3)2. The function and its first and
second derivatives are:

y = x(x − 3)2 = x3 − 6x2 + 9x,

dy

dx
= 3x2 − 12x + 9,

d2y

dx2
= 6x − 12.

Now check the following:
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• dy/dx = 0 when x = 1 or x = 3

• y has a maximum value when x = 1

• y has a minimum value when x = 3

• When x = 2, dy/dx 6= 0, but d2y/dx2 = 0.

In the last case, the point corresponding to x = 2 is
called a point of inflexion: draw the graph of y against
x to see what that means.

10) Find the first, second, and third derivatives of the
function

y = f(x) = 3x4 − 4x3 + 1

and show that it has stationary points at x = 0 and at
x = 1. What kind of stationary points does the curve
have in these two cases (one of them is also a point of
inflexion).

11) Sketch the function y = x2e−ax2

(a = constant) for
positive values of x and find its first and second deriva-
tives. (You can look ahead to the next Chapter, where
you’ll find in (3.24) that (d/dx)ex = ex. The rest you
can do using the results in Section 2.4. Then find the
value of x for which the function reaches its maximum
value. What will happen to the position and height of
the peak if you double the value of the constant a?
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12) Find the first and second derivatives of the two func-
tions

y1 = (1 + x2)−2, y2 = exp(−x)/(2 − x2)

and then those of their product y = f(x) = y1y2.

Sketch the function y = f(x) and look for any turning
points in the range x = 0 to x = 2.
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Chapter 3

Some standard
derivatives and
integrals

3.1 Differentiating the function

y = f(x) = xn

This is the simplest of all the functions we might want
to differentiate or integrate. We’ve already met two im-
portant examples, with n = 1 and n = 2, in Section 2.2;
but now let’s think about the more general case where n
is any positive integer. Later we’ll be able to get similar
results when n takes values that are non-integral and
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even negative.

The method to be used is always the same, starting from
the definition in Section 2.3 (equation 2.9). Thus dy/dx
is the limit as x → 0 of the fraction

δy

δx
=

f(x + δx) − f(x)

δx
=

(x + δx)n − xn

δx
.

The first thing we need is an expression for any positive
power of (x + δx): this may be written (a + b)n, where
a = x, b = δx, and we want to expand this function by
writing it in the form

(a + b)n = (a + b)(a + b)(a + b)... (a + b) (n terms)
(3.1)

and multiplying it out. For n = 2 we know the answer:
(a + b)2 = a2 + 2ab + b2, but how do we get the answer
for any value of the positive integer n?

Clearly there will be just one term an, in which we’ve
taken an a from each factor and multiplied them all
together; and there’ll be a term bn, arising when we take
b instead of a. So (a + b)n = an + ..... + bn, where the
terms in between will all include both as and bs. To find
the missing terms we need to think of them one by one,
asking how each one can arise. For example, there will
be many terms which contain only one b factor, along
with (n − 1) a-factors, giving results such as baaa ... a,
abaa ...a, and so on; and since the order of the factors in
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a product doesn’t matter all the n terms will have the
same value an−1b – giving altogether n × an−1b as the
second term in the expansion of (3.1).

To get the third term we take two b-factors, getting
bbaa ... a, baba ... a, baab ... a, etc. where there’s al-
ways a b (from the first factor in (3.1)) in the first place,
but the second b comes first from the second factor and
next from the third factor, and so on. But having taken
the first b from the first factor in (3.1) there will n − 1
factors left, from which to take another b; so, since the
first b could be taken from any of the n factors (not only
the first) it may seem that the next term in the expan-
sion would be n(n− 1)an−2b2 – with n− 2 a-factors and
2 b-factors. But wait a minute! When we take out a b
and another b from any two factors, it doesn’t matter
which we call the ‘first’ and which the ‘second’ – they
give only one term. So the number we’ve counted has
to be divided by 2.

The first three terms in the expansion of (3.1) can now
be written down:

(a + b)n = an + nan−1b +
n(n − 1)

2
an−2b2 + .... (3.2)

and this is all we’ll need. This is called a binomial
expansion, ‘binomial’ meaning there are two terms in
the function a + b whose nth power is being expanded.

To differentiate y = f(x) = xn is now easy. The increase
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in f(x) when x → x + δx follows on using (3.2) with
a = x and b = δc:

δy = f(x + δx) − f(x)

= (x + δx)n − xn

= xn + nxn−1δx + 1
2
n(n − 1)xn−2δx2 + ... − xn.

The ratio (δy/δx) in (2.9) thus becomes

δy

δx
= nxn−1 + 1

2
n(n − 1)xn−2δx + ...

and in the limit δx → 0 the last term goes to zero, so

y = xn :
dy

dx
= lim

δx→0

δy

δx
= nxn−1. (3.3)

This is the result we wanted: it gives the derivative of
xn for any value of n, provided it is a positive integer.

But what if n is not a positive integer? For example,
if we want to differentiate the function f(x) = 1/x this
will be xn with n = −1. In this case we can use the
‘building up’ rules in Section 3.2 to go from what we
know, the derivative of xn, to the derivative of what we
don’t know, x−n. The rule for dealing with a product of
two functions, u and v, is

d(uv)

dx
= u

dv

dx
+ v

du

dx
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and if we put u = xn (the thing whose derivative we
know), taking v = u−1, then we can say uv = 1 – a
constant, with derivative (slope) zero. In that case the
last equation becomes 0 = u×(dv/dx)+v×(du/dx), or
(dv/dx) = −u−2(du/dx); so we can rearrange things to
get (Remember the rules for handling powers, in Book
1 Section 4.2)

dv

dx
= −x−2n × (nxn−1) = −nx−n−1.

In other words, to differentiate a negative power of x,
namely x−n (with n a positive integer) we simply mul-
tiply by the power (or ‘exponent’) −n and reduce the
power of x by 1. This is exactly the same rule we ob-
tained in (3.3) except that we replace the positive integer
n by the negative integer −n. In Book 1, we started with
counting – the positive integers – and then defined the
negative integers and the zero, so that the same rules
still applied; and then went on to talk about ‘rational
fractions’ of the form p/q (p, q positive integers); and
finally went on to talk about numbers in the ‘field’ of all

real numbers. Now we’re once again generalizing; and
finding that the same rules apply for differentiating neg-
ative powers as applied for positive powers. The next
step is to show that things work in exactly the same
way even when n is not an integer but instead a fraction
n = p/q (positive or negative). Try to prove that the
rule (3.3) is still true in this case. Then you’ll be able
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to differentiate things like y =
√

x = x
1
2 . The final step

is to prove that the same rule holds good for all real
numbers; that’s more difficult but we’ll be able to prove
it later.

3.2 Integrating the function

y = f(x) = xn

In the last Chapter we saw that the process of getting a
new function by differentiating could be reversed: differ-
entiating f(x) means, in terms of the graph of y = f(x),
finding the slope of the curve at any point (x, y); inte-
grating f(x) means finding a new function F (x) such
that the slope of F (x) will take us back to the given
function f(x). If we use the notation F ′(x) = dF/dx
the problem of integration is to find F (x), knowing that
F ′(x) = f(x), where f(x) is the given function. The
result is denoted by F (x) =

∫

f(x)dx.

For simple functions like y = xn we can get the integral
just by reversing the rule (3.3): instead of multiplying
the function by n (the exponent) and then reducing the
value of n by 1, we increase the value of n by 1 and then
divide the result by the (new) exponent. Why must we
change n first and then use it in doing the division?
It’s just common sense: you put your socks on before
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you put your shoes on, so you must take your shoes
off before you take your socks off! The operation of
taking something off is the inverse of putting it on; so
to get the inverse of doing both operations, one after the
other, you must change the order in which you do the
inverse operations. (We’ve met this idea before in Book
1 Section 6.1, in talking about symmetry operations,
and it’s a very general idea.) Thus (as long as n 6= −1)

Given y = xn = F ′(x) : then F (x) = (n + 1)−1xn+1,
(3.4)

which you can check by doing the inverse operations,
in the reverse order, on F (x); reduce the n + 1 in the
exponent to n and multiply what you get by n + 1 –
obtaining xn, which is the given function f(x). But
wait a minute! Why did we put (n 6= −1) before writing
equation (3.4)? Only because, for that very special case,
the rule doesn’t work: for n = −1 the function F ′(x)
is f(x) = 1/x, which was plotted in Fig.3 and gave
us a hyperbola. The integral F (x) then comes out as
F (x) = x0/0, which is infinite for any value of x and so
doesn’t even define a function of x. We’ll come back to
this special case in Section 3.4.

For the moment we can summarize what we’ve done by
using A to mean “multiply the function by the number
in the exponent” and B to mean “decrease the number
in the exponent by unity”. If we call the result D, then
Dxn = BAxn, describes the operation A followed by B –
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operators always working on whatever function stands
on their right. Thus

D(xn) = BA(xn) = B(nxn) = nxn−1

while (with A
−1 meaning “divide by the exponent” and

B
−1 meaning “increase the exponent by 1”)

D
−1 = A

−1
B
−1(xn) = A

−1(xn+1) = (n + 1)−1xn+1a.

So everything works as it should: you can get the in-
tegral either by reversing the rule (if you have one!)
for differentiating a function of some given kind – us-
ing ordinary language – or you can do the same thing in
symbols. The symbols D, for differentiating (applying
d/dx), and D

−1, for integrating (doing the integration
denoted by

∫

), were already used in equation (2.11) and
are often useful. They were first used long ago by the
great German mathematician Leibnitz (1646-1716), who
was Newton’s rival in developing the calculus, and are
nowadays much used in mathematical physics.

3.3 The trigonometric or

‘circular’ functions

Sometimes the independent variable x is an angle and y
is given by a function f(x) such as sin x, cos x, or tan x,
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which involve the lengths of the sides in a triangle. So
as not to get mixed up let’s use (just for now) θ instead
of x as the name of the angle. If r is the length of a line
OP from the origin of coordinates to the point P(x, y),
making an angle θ with the x-axis, then tan θ = y/x
is the slope of the line, while sin θ = y/r and cos θ =
x/r. Functions of this kind are called trigonometric
functions (used in describing the angles in a triangle
– gonos being the Greek word for ‘angle’). The three
functions are related by

tan θ =
y

x
=

y

r

(x

r

)

−1

=
sin θ

cos θ
(3.5)

so we only need study sin θ and cos θ. Another useful
relationship is

sin2 θ + cos2 θ = 1, (3.6)

which you can easily show from the definitions. (Notice
that, for example, (sin θ)2 is usually written as sin2 θ,
called “sine-squared-theta”.)

The sine and cosine functions first came up in Book 1
(Chapter 4), where we found they could be expressed
as series. Going back to the usual names (x, y) for
the independent and dependent variables, the first few
terms in each series have been written out in (1.6). Even
though the series are both infinite, we know from (2.16)
that the derivative of a sum is the sum of the derivatives;
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so we can differentiate term-by-term to find, using the
result (3.3) for powers of x,

d

dx
sin x = 1− 3x2

3.2.1
+

5x4

5.4.3.2.1
+ ... = 1− x2

2.1
+

x4

4.3.2.1
+ ...

and in the same way

d

dx
cos x = 0 − 2x

2.1
+

4x3

4.3.2.1
+ ... = −x +

x3

3.2.1
+ ... .

The two results together give us

d

dx
sin x = cos x,

d

dx
cos x = − sin x. (3.7)

The derivative of tan x can now be obtained using the
rules in Section 2.4, with tan x = sin x/ cos x.

Let us put y = uv, with u = sin x, v = (cos x)−1. Then,
using (2.18),

d

dx
tanx = sin x

dv

dx
+ (cos x)−1(cos x) = sin x

dv

dx
+ 1,

(3.8)
by the first result in (3.7). All we need now is the deriva-
tive of v = (cos x)−1, which is a ‘function of a function’
and can be handled using (2.19). If we now call cosx by
the new name w, we can say

v = w−1,
dv

dx
=

dv

dw

dw

dx
.
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But we know dw/dx = − sin x, from the second result
in (3.7), and we also know that the rule (3.3) holds even
when n is a negative integer; so we can get everything
we need.

Thus, using (3.3) with n = −1 and new names for the
variables (w, v in place of x, y), it follows that dv/dw =
(−1)w−2; and from this

dv

dx
=

dv

dw
× dw

dx
=

sin x

(cos x)2
.

This is the end of the story! Putting it in (3.8) we get

d

dx
tanx =

(sin x)2

(cos x)2
+1 =

(sin x)2 + (cos x)2

(cos x)2
=

1

(cos x)2
,

– another standard result, usually written as

d

dx
tan x = sec2 x (sec x = 1/ cos x). (3.9)

(The name “secant” (‘sec’ for short) is a term used
in geometry – enough to know that it’s the recipro-
cal of the cosine! The reciprocals of all three functions
sin x, cos x, tan x are also known by their other names,
cosecx, sec x), cot x but you won’t use them much.)

Just to be more complete, we add the result for the
‘cotangent’ cot x:

d

dx
cotx = −cosec2x (cosecx = 1/ sin x), (3.10)
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which can be found in the same way as for tan x.

From the formulas for the derivatives we can easily ob-
tain the corresponding integral formulas, just by turning
them round. Thus, using F ′(x) to denote the function
obtained by differentiating any F (x), we suppose the
result F ′(x) = f(x) is known and can then say

f(x) = DF (x) =
d

dx
F (x), F (x) = D

−1f(x) =

∫

f(x)dx.

If we take F (x) = cos(x), then we know from (3.7) that
D cos(x) = sin(x) and therefore cos(x) = D

−1 sin(x) =
∫

sin(x)dx; and similarly for the sine.

To summarize:

Given cos x = F ′(x) : then F (x) = sin x =

∫

cos xdx,

(3.11)

Given sin x = F ′(x) : then F (x) = − cos x =

∫

sin xdx,

(3.12)

Given sec2 x = F ′(x) : then F (x) = tan x =

∫

sec2 xdx.

(3.13)
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and finally

Given cosec2x = F ′(x) :

then F (x) = − cot x =

∫

cosec2xdx. (3.14)

3.4 The exponential and

logarithmic functions

In Book 1, Section 5.1 we met a number defined as the
limit of a series (remember the shorthand used in Book
1: 2! = 1 × 2, 3! = 1 × 2 × 3, etc,, with 0! defined as
1, and that n! is read as “factorial n”). If we define

n! = 0, the function y = ex is a sum of terms xn/n!,
starting with n = 0:

y = 1 + x +
x2

2!
+

x3

3!
+ ... = f(x), (3.15)

when the number of terms becomes infinite. The result
depends on the value we give to x and is denoted here
by f(x): it is a function of the independent variable x.

In Book 2 we came across this function again, finding
some of its amazing properties. Let’s recall them: if you
multiply two such series together, taking two different
values of x – x = p in one series and x = q in the other
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– you find

f(p)f(q) =

(

1 + p +
p2

2!
+ ...

) (

1 + q +
q2

2!
+ ...

)

= 1 + (p + q) +

(

p2

2!
+ pq +

q2

2!

)

+ ...

= 1 + (p + q) +
(p + q)2

2!
+ ... , (3.16)

where we show terms only up to the ‘second degree’
(i.e. those with not more than two variables multiplied
together). The result seems to be just the same function
(3.15), but with the new variable x = p + q. And if you
go on, always putting together products of the same
degree, you’ll find the next terms are

(p + q)3/3! = (p3 + 3p2q + 3pq2 + q3)/3! (3rd degree)

and

(p+q)4/4! = (p4+4p3q+6p2q2+4pq3+q4)/4! (4th degree.)

As you can guess, if we take more terms we’re going to
get the result

f(p)f(q) = 1+(p+q)+
(p + q)2

2!
+

(p + q)3

3!
+... = f(p+q).

(3.17)
To prove this result generally is quite hard: you have to
look at all possible ways of getting products of the nth
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degree (n factors at a time) and then show that what
you get can be put together in the form (p + q)n/n!.
So for the moment we’ll just accept (3.17) as a basic
property of the function defined in (3.15): it is called the
exponential function and is often written as “exp x”.

From (3.17) we find, by putting p = q = x, that f(x)2 =
f(2x); and on doing the same again f(x)3 = f(x) ×
f(2x) = f(3x). In fact

f(x)n = f(nx). (3.18)

This second basic property lets us define the nth power
of a number even when n is not an integer ; it depends
only on the series (3.15) and holds good when n is any
kind of number (irrational or even complex – look back
at Book 1 if you’ve forgotten what this means). Even
more amazing, both (3.17) and (3.18) are true whatever
the symbols (x, p, q) may stand for – as long as they
satisfy the usual laws of combination, including qp = pq
(so that products can be re-arranged, as in getting the
result (3.17)).

In Book 1, Section 1.7, the (irrational) number obtained
from (3.15) with x = 1 was denoted by e:

e = 1+1+
1

2
+

1

6
+

1

24
+ . . . = 2.718281828 . . . (3.19)

and this gives us a ‘natural’ base for defining all real
numbers. From (3.18), en = f(n) is true for any n – not
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just for whole numbers but for any number. So changing
n to x gives

ex = 1 + x +
x2

2!
+

x3

3!
+ . . . , (3.20)

which is the function f(x) = exp(x) we started from;
but we can now think of it as a power of the special
number e. Any number y can be written as e raised
to the power x; y = ex where e is the base and x is
the exponent. The ‘laws of indices’, set up in Book
1 Chapter 4 – but only for indices (powers) that were
whole numbers – can now be written in general form as

exey = ex+y, (ex)y = exy. (3.21)

(Notice that the other notation, ex = exp(x) is conve-
nient when x may stand for some expression too big to
be written as an index; and (3.21) can just as well be
written as exp(x) exp(y) = exp(x + y) etc.)

Let’s get back to the differential calculus! The one thing
that gives the exponential function all its remarkable
properties is very simple: if we plot a graph of y = ex, a
in Fig.4 (Section 1.3), and draw a tangent to the curve
at any point (x, y), we find the slope at that point is
exactly equal to the value of y. As an equation,

y = exp x :
dy

dx
= y = exp x. (3.22)
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This is called a differential equation – generally a re-
lationship between a function and its derivatives – and
this is just about the simplest one you can imagine.
Other examples of differential equations appear in al-
most all parts of science – and will therefore be found
in many other books of the Series. Even in the present
book we noted (Section 1.4) that the exponential func-
tion described the growth of a population: the number
of people (N) in a city, or country, increasing at a rate
proportional to the number already there – which means
dN/dt = cN , where c is a proportionality constant.

To check that the exponential function really does have
the property (3.22) it’s enough to use the definition
(3.15), differentiating term-by-term: thus

dy

dx
=

d

dx

(

1 + x +
x2

2!
+

x3

3!
+ ...

)

=

(

0 + 1 +
2x

2.1
+

3x2

3.2.1
+ ...

)

=

(

1 + x +
x2

2!
+

x3

3!
+ ...

)

= exp x = y.

In some books you’ll find the differential equation is
taken as the starting point and the series (3.15) is found
as its solution; but however you define exp x it’s a very
remarkable function.
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The integral of exp x follows in the usual way, by revers-
ing the rule for getting the derivative (as in (3.11), for
example). Thus,

Given exp x = F ′(x) : then F (x) = exp x =

∫

exp xdx.

(3.23)

The logarithmic function

This function has been introduced already, in equation
(1.8) of Section 3.1, as the inverse of exp x, and the
definition is repeated here:

Given y = exp x then x = log y. (3.24)

Fig.7 shows how the function looks, when x-values are
plotted vertically and y-values horizontally. If we use
the usual convention, plotting y upwards (as the depen-
dent variable) and x left-to-right (as independent vari-
able), then the definition of the logarithmic function
becomes (exchanging the variables in the last equation)

Given x = exp y then y = log x. (3.25)

Now there is an important, but simple, relationship be-
tween the derivative of a function and the derivative of
its inverse: if you think of y as a function of x, then
the derivative dy/dx is the limiting value of the ratio
δy/δx; but, thinking of x as a function of y, the deriva-
tive dx/dy is the limit of δx/δy. The product of these
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two fractions is unity, however small δx and the related
δy may become; so in the limit

dy

dx

dx

dy
= 1,

dx

dy
=

(

dy

dx

)

−1

. (3.26)

We can now go back to (3.25), where x = exp y requires

dx

dy
= exp y = x,

and using (3.26) it follows that

dy

dx
=

1

x
. (3.27)

To summarize, we have found the function y = log x
whose derivative is xn with n = −1. This is the ‘special
case’ in which the rule for differentiating the function
f(x) = xn can’t be used to get the integral F (x) =
∫

f(x)dx. So the mystery is solved:

Given y = f(x) = x−1 : then F (x) =

∫

1

x
dx = log(x).

(3.28)
This is the last of the standard results we set out to
find. It may seem strange that we haven’t come out
with a nice series for log x, something like the one we
started from for exp x. Instead, the function is defined
as an integral, which isn’t easy to evaluate by simple
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arithmetic. The real reason is that the function we’re
integrating, y = x−1, describes a hyperbola of the form
shown in Fig.3; it breaks into two branches, separated
by a singularity at x = 0 where the function and its
derivatives become infinite. We can’t find a series of the
type y = a+bx+cx2+dx3+ ..., whatever values we give
the coefficients a, b, c, ... because at x = 0 everything
‘blows up’. This just shows how careful you must be
in mathematics if you don’t want nasty surprises! It’s
always a good idea to plot the functions you’re dealing
with, to ‘see’ how they behave.

A note on changing the variable

We now have a short list of standard functions, whose
derivatives and corresponding integrals can be taken as
‘known’. But the list can be greatly extended by using
the rules in Section 2.4. Many examples will be found
in the Exercises. Here we just give one to show it’s not
difficult.

Suppose we want the derivative of y = exp(ax) where
a 6= 1. We can think of ax as a new variable, putting
ax = t and y = exp(t). The rule for differentiating a
function of a function then gives

dy

dx
=

dy

dt

dt

dx
= a

dy

dt
= a exp(t) = a exp(ax)

– so easy that, with a bit of practice, you can do it in
your head! Do this for all the functions you’ve looked

76



at in this Chapter and then check your results against
those listed in the Table at the beginning of Chapter 4.

Exercises

1) Find a formula for the derivative of the function y =
xp/q, where p/q is a rational fraction (the ratio of two
positive integers). (Hint : y is a function of a function,
y = up, where u = x1/q)

2) Prove the results in (3.7) and (3.9), starting from the
formulas given in Book 1 (end of Chapter 4), namely

sin(a + b) = sin a cos b + cos a sin b,

cos(a + b) = cos a cos b − sin a sin b.

3) From the results in (3.7) and (3.9), get expressions for
the derivatives of the functions y = sin ax, y = cos ax,
and y = tan ax.

4) What forms do the results (3.11), (3.12), and (3.13)
take when x is replaced by ax?

5) What form does the differential equation given in
(3.22) take when x is replaced by ax? And what is the
corresponding form of (3.23)?

6) Show that log X can also be expressed as a definite

integral (measured by the area under a curve between
end points at 1 and X, namely

log X =

∫ X

1

x−1dx.
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(Hint : Look back at equation (2.9), where the function
being integrated was in that case f(x) = x. Here, in-
stead, f(x) = 1/x but the meaning is similar: f(x)dx
is the increase in the ‘area function’ (now log X) when
the upper boundary is increased to X + dx.) Note that
choosing the lower boundary at x = 1 simply guarantees
that log 1 = 0 (e0 = 1).

7) Find the derivatives dy/dx of the following functions:

(a) y = (x + 1/x)2 ,

(b) y = (1 + x2)/(1 − x),

(c) y = (1 − cos x)/(1 + cos x),

(d) y = x sin x,

(e) y = x2 cos x,

(f) y =
√

1 + x,

(g) y =
√

1 + sin x,

(h) y = 1/
√

1 − x,

(i) y = 1/
√

1 − x2,
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(j) y = sin x/x,

(k) y = x/ sin x.

(l) y = ex sin x/x,

(m) y = exp(−ax2) sin x.

8) Make rough sketches of some of the functions used in
Exercise 7, to see how they behave as x → ±∞. Look
out for singularities and any other points of interest.
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Chapter 4

Integrals – and ways of
getting them

4.1 The problem of integration

If someone gives you a function, y = f(x), without
telling you anything about it, how can you find the in-
definite integral F (x) =

∫

f(x)dx? All you know is that
the derivative of F (x) is the given function f(x). That
is the problem we face in this Chapter.

In other words, you have to solve the equation

dF

dx
= f(x) (4.1)

– which is a differential equation (relating, in general,
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functions and their derivatives).

The integrals we were able to write down in Chapter
3 were all obtained by ‘reversing’ the rule for getting
the derivative f ′(x) of some known function f(x): this
rule describes a direct operation on the function f(x),
denoted at the end of Section 3.2 by the operator D.
With this notation,

df

dx
= Df(x). (4.2)

But to find F (x) from (4.1) requires the inverse opera-
tion, indicated by the inverse operator D

−1, such that

F = D
−1f(x). (4.3)

We have recipes, discovered in the last Chapter, for do-
ing the direct operation D on various known functions;
but we have no recipe for the inverse operation D

−1.
All we can say is that if D works on the function F (x)
it should give, according to (4.1), f(x) = DF (x). The
trouble is that F (x) is not a known function – it is the
answer we are looking for! We could make a guess at
the answer, work on it with D (i.e. differentiate it), and
see if the result is the given function f(x). If it is, then
we guessed right; but there are millions of other guesses
we could have made – how do we find the right one (if
there is one)?
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Let’s start by making a Table, listing the results we’ve
found so far:

Function f(x) Deriv. = Df(x) Integral = D
−1f(x)

xn (n 6= −1) nxn−1 xn+1

n + 1

1

x
(= x−1) −x−2 log x

log x
1

x
x log x − x

ex ex ex

sin x cos x − cos x

cos x − sin x sin x

Table 1: Some derivatives and integrals

82



Notes on Table 1

The operator D and its inverse D
−1 should have the

property
DD

−1 = D
−1

D = I, (4.4)

where I is called the identity operator which leaves any
function unchanged. Equation (4.4) means that when
the two operators, D and D

−1, work on a function one af-
ter the other, either way round, they should not change
the function in any way: each one undoes the work of
the other. You should check this property carefully, us-
ing the results listed in Table 1 (Don’t worry about the
line starting with ‘log x’ – we don’t yet have the result
in Column 3, but you’ll find it in Section 3.4) Remember
that operators always work on functions that stand on
their right, so that ABf(x) means “operate with B first
and then apply A to the result”. This is just a ‘conven-
tion’ agreed on in Book 1 (Chapter 7); but sometimes
you might find a book that uses the opposite convention,
so watch out!

To start you off, take the first line in the Table where the
operators work on f(x) = xn, (n 6= −1). To evaluate
DD

−1f(x) we have

DD
−1f(x) = D

(

xn+1

n + 1

)

=
1

n + 1
(n + 1)xn+1−1 = xn = f(x),
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where you’ll notice that after the first operation the n
has been changed to (n + 1) – according to the result in
the third column. But if you do the operations in the
reverse order you get

D
−1

Df(x) = D
−1

(

nxn−1
)

= n

(

xn−1+1

n − 1 + 1

)

= xn = f(x),

where after the first operation you had to use n − 1
(from the second column) in place of n. In both cases
numerical multipliers are not touched by the operators
and can be moved to the left.

One last, but very important, point. You go from a re-
sult in the first column of the Table to the one in the
third column, by integrating, and you can change the re-
sult (which is called the ‘indefinite integral’) by adding
to it any constant term C – without spoiling anything.
This is because the indefinite integral is defined only
as a function satisfying the equation (4.1); and if you
change F (x) into F (x) + C it doesn’t make any differ-
ence, because dC/dx = 0 for any constant. So, even if
it’s not always written in Tables of integrals, it should
be understood. Notice also that if we want only a Table
of integrals then we only need the entry in Column 1,
which is the integrand – the thing we want to integrate
– and the corresponding entry in Column 3 – which is
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the integral. (By now we know how to differentiate any-
thing, so in later Tables we’ll leave out the derivatives.)

Inverse functions

In Section 3.3 we found the derivatives of the circular
functions sin x, cos x, and tanx, cot x. We can add more
lines to Table 1 by including, along with these functions,
their inverses: these are called sin−1 x, cos−1 x, tan−1 x,
and cot−1 x. The idea of the ‘inverse’ of a function was
introduced in Chapter 1 (Section 1.4); the only new
thing we’re doing now is to write the inverse of any func-
tion f(x) as f−1(x), instead of giving it a new name like,
say, g(x). In words, the relationship y = sin x is simply
turned round so that x = sin−1 y means “x is the angle
whose sine is y” and similarly for the others.

To make sure you don’t get mixed up with something
to the power −1, other names are sometimes used: for
example “arcsin” x instead of sin−1 x, but we’ll go on
with the “−1” notation, which reminds you that it’s an
inverse function. Remember also that when x is used as
a variable it is a number of radians: if you turn a pointer
so that it points in exactly the opposite direction, then
you’ve turned it through π radians, where π ≈ 3.14159.
(If you’ve forgotten all about angles, look back at Book
2.)

It’s quite easy to differentiate the inverse functions by
using the simple rule in (3.26): if we have a function
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y = f(x) and want to think of x as a function of y,
writing x = f−1(y), then

dx

dy
=

1

dy/dx
=

(

dy

dx

)

−1

. (4.5)

Thus, with y = sin x and (dy/dx) = cos x, we have
x = sin−1 y and (dx/dy) = 1/(dy/dx) = 1/ cosx.

But is this really the result we want? We’ve always used
x for the independent variable (plotted along the hor-
izontal axis) and y for the dependent variable (plotted
vertically); so to keep this practice we must swap x and
y. For the inverse function y = sin−1 x we then write

y = sin−1 x : dy/dx = 1/ cos y

– but we’re still not finished, because the result for
dy/dx should be written in terms of the independent
variable x, not in terms of cos y. However, x = sin y and
we know that for any angle, θ say, sin2 θ +cos2 θ = 1; so
we can say cos2 y = 1 − sin2 y = 1 − x2. And putting it
all together this gives

y = sin−1 x : dy/dx =
1√

1 − x2
. (4.6)

In the same way (do it!) you find three more results:

y = cos−1 x : dy/dx =
−1√
1 − x2

, (4.7)
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y = tan−1 x : dy/dx =
1

1 + x2
, (4.8)

y = cot−1 x : dy/dx = − 1

1 + x2
. (4.9)

From these derivatives, DF (x) = f(x), we can write
down the corresponding indefinite integrals, D

−1f(x) =
F (x), and extend the list in Table 1. Thus, from (4.6),
the new integral formula will be

D
−1(dy/dx) = D

−1 1√
1 − x2

= y = sin−1 x.

Similarly, the other formulas lead to the Table below:

Function f(x) Integral = D
−1f(x)

1√
1 − x2

sin−1 x

1√
1 − x2

− cos−1 x

1

1 + x2
tan−1 x

1

1 + x2
− cot−1 x

Table 2: Some more indefinite integrals
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Notes on Table 2 (Only for the very brave!)

Something looks odd about this Table: it seems you can
get two different answers when you integrate the same func-
tion! To clear up this mystery you have to look at the forms
of the functions you’re dealing with. Most of the functions
we’ve looked at so far are single-valued : if you’re given a
value of the independent variable x, then there’s only one

corresponding value of y = f(x). But if x is an angle,
then y = sinx, for example, has the same value for an-
gles x, π − x, 2π + x, ..., and so on. This means the inverse
function x = sin−1 y (the angle whose sine is y is a multiple-

valued function of the variable y, as can be seen from Fig.5
in Chapter 1 (repeated here in Fig.16a).

The trouble is that y = sin x is a periodic function, which
wiggles up and down forever, in both directions, as x goes to
±∞. If you look only at the range with x between −π/2 and
+π/2 (half a complete up-down wiggle – which goes from −π
to +π, as shown in Fig.16a), then y = sinx and its inverse
x = sin−1 y are both single-valued functions: x = π/12,
example, means y = 1

2 for that value and that value only –
and vice versa when you think of x as a function of y. If you
go outside the range indicated, then you can find an infinite
number of angles giving y = 1

2 .

To make sure we get every possible pair of related x, y values
only once, we consider only the range of x values going from
−π/2 to +π/2: values of y within this range are called the
principal values of the function.
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Figure 16

The function y = cos x is also periodic and looks exactly
like y = sin x if you slide it back (to the left) through 1

2π, so
that its value starts off at 1 instead of 0. The range in which
y = cos x takes its principal values thus goes from x = 0 to
x = π.

On the other hand, the functions y = tan x and y = cot x go
smoothly from −∞ to +∞, but break into separate ‘branches’
as shown in Fig.16b. The first branch, for y = tan x, which
holds the principal values, falls within the range x = −π/2
to x = +π/2; but if you shift the curve left or right, chang-
ing x to x ± π, x ± 2π, etc. you get an infinite number of
parallel branches.

The first branch of the curve y = cot x, looks exactly the
same as that for y = tan x, but shifted to the right by 1

2π.
And, again. all possible values of y = cot x are contained,
once and once only, in the range x = −π/2 to x = +π/2.

Whenever we want to integrate a function we’ll start by
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asking if it can be related to any of the ‘standard forms’
listed in Tables 1 and 2; and we’ll find later that even if
sometimes we get more than one result there’s nothing to
worry about – because we mustn’t forget they are allowed

to look different when the arbitrary constant C is included!
To make them agree we only have to choose the right value
of C.

So far, in earlier Chapters, we’ve been thinking of integration
just as the inverse of differentiation: D is the operator that
takes you from a function f(x) to its derivative df/dx (which
is the slope of the curve y = f(x) at any chosen point (x, y);
while the inverse operator D

−1 is the one that takes you
back, from the derivative to the function itself, and describes
integration – putting the function together again. This is
called ‘indefinite’ integration because any constant C can be
added on to the result, to give a new function y = f(x) + C
with exactly the same derivative, for given x, as y = f(x):
the new curve is just like the original but is shifted upwards
by an amount C at all points. If we don’t bother to put in
the constant, then we call y = f(x) the primitive function:
it gives the correct derivative df/dx (which we were given)
but so do all the other functions f(x) + C. Which one we
choose to call ‘primitive’ doesn’t matter: they are all equally
satisfactory as integrals
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4.2 But why do we want to inte-

grate anyway?

In Chapter 2, when the idea of integration was first used,
we were trying to find the area under the curve y = f(x)
between the curve, the x-axis, and vertical lines (‘ordinates’)
at x = x0 and x = X, as in Fig.15, and the value of the area
A depended on where we put the vertical boundaries which
mark the integration limits. If we choose the limits to be
x = x1 and x = x2, the ‘upper’ and ‘lower’ limits, this
area is a ‘definite’ integral denoted by A =

∫ x2

x1
f(x)dx. In

particular

A =

∫ x

x0

f(x)dx

is the area corresponding to lower limit at x = x0 and upper
limit taken at ‘any old value’ of x.

We also noted, at the end of Section 2.2, that if the up-
per limit is increased from x to x + dx, by the infinitesimal
amount dx, then the area function increases according to

dA

dx
= f(x). (4.10)

But now look back at our definition of indefinite integration,
through (4.2) and (4.3), using the area function A(x) in place
of f(x), and you see that

dA

dx
= f(x) means A = D

−1f(x) =

∫

f(x)dx (4.11)
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In other words, to get the definite integral as an area be-
tween two limits, x1 (lower) and x2 (upper), you first get
the function A(x), by reversing the rules for differentiating,
and then find the area as

∫ x2

x1

dA = A(x2) − A(x1) = [A(x)]x2

x1
, (4.12)

where the square-bracket quantity just stands for the dif-
ference of the area function between the upper and lower
limits.

It’s now clear why the arbitrary constant C in an indefi-
nite integral doesn’t matter when we need to calculate a
definite integral: when you do the subtraction in (4.12) the
constants will cancel. Always remember, however, that the
function you’re integrating must ‘behave’ well in the range
(x1, x2); the function f(x) must show no ‘breaks’ (disconti-
nuities) or ‘infinite peaks’ (singularities), where the area or
its derivative could not be defined.

Some Applications

Some of the most direct applications of the calculus have to
do with the calculation of length, area and volume, and
with their rates of change with time. For example, the dis-
tance you travel along some curve connecting two points is a
path length, s say, measured from the starting point where
s = 0. And your speed v will be the rate of increase of s
with time: v = ds/dt, at whatever point you happen to have
reached. If the curved path is described, using rectangular
coordinates (x, y), by the relationship y = f(x) then both s
and v will be functions of the one independent variable x;

92



and as you go along s, v and x will all be functions of the
time t. So we can write (not thinking yet about the time t)

y = f(x), x = g(t), s = s(x), v = v(x), (4.13)

where we’ve used f and g as the first two function names,
but kept s and v to serve for both the physical quantities
and the names of the functions which describe them.

That may seem confusing, but it’s the usual convention in Sci-

ence: we can’t invent a new function name every time we want

to change the variable; and anyway writing s = s(x) tells us that

here we’re thinking of s as a function of x, while s = s(t) says that

s is also a function of t. The value of the dependent variable, on

the left-hand side of such equations, is determined by that of the

independent variable on the right; and that one-to-one correspon-

dence is what defines the functional relationship. Double use of

the same symbol is not strictly correct, but we always know what

is meant – and that is what matters!

Now let’s travel along the curve shown in Fig.17, starting
from P1, where x = x1, and finishing at P2, where x = x2.

x-axis

y-axis

P1

P
δx

δy
δs

P2

Figure 17
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At point P(x, y) on the curve, anywhere between these lim-
its, the next small step will carry you to (x + δx, y + δy)
and the step length will be δs ≈

√

δx2 + δy2, provided the
increases δx, δy are small, as in the Figure. (Remember that
δx is a single quantity and that δx2 means its square, (δx)2,
not the increase of x2.)

Now the total path length from P1 to P2 will be the sum of
all the elements δs and we write this as: s12 ≈ ∑

δs, where

δs ≈
√

δx2 + δy2 =

√

δx2

(

1 +
δy2

δx2

)

.

In the limit where δx, δy → 0 the ratio on the right be-
comes (dy/dx)2 and the sum over all infinitesimal elements
becomes an integral:

s12 →
∫ x2

x1

[

1 +

(

dy

dx

)2
]

1
2

dx. (4.14)

It is a definite integral between the limits x = x1 and x = x2

and this result is general for any plane curve.

To see how things work out, look at the quadrant of a circle
in Fig.18.
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Here the equation of the curve is x2 + y2 = a2 (a being the
radius). Thus, taking a positive square root (why?) and
doing the differentiation,

y =
√

a2 − x2,
dy

dx
= − x√

a2 − x2
.

So the whole arc length from P1 to P2 will be, from (4.14),

s12 =

∫ x2

x1

[

1 +
x2

a2 − x2

]

1
2

dx =

∫ a

0

a√
a2 − x2

dx. (4.15)

This is not exactly one of the standard integrals in Table
2, but we can use the same trick as at the end of Section
3.3 to make it so. Let’s put x = au, where u is a new
variable (u = x/a or x in units of the radius) and remember
that

∫

f(x)dx =
∫

f(x)(dx/du)du. Since dx/du = a and
f(x) = f(au) in terms of u, the last result can be re-written
as

s12 =

∫ a

0

a√
a2 − a2u2

adu = a

∫ 1

0

1√
1 − u2

du. (4.16)
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This is a standard integral; it is sin−1 u taken between the
limits u = 0 and u = 1, which correspond to x = 0 and
x = a i.e. the ends of the quadrant in Fig.18. On putting in
these limits (4.16) gives

s12 = a(sin−1 1 − sin−1 0) = a(π/2 − 0) = 1
2aπ. (4.17)

The circumference of a whole circle, of radius a, is 4 times
the arc length for one quadrant and is thus 2πa – as we knew
from the geometrical argument in Book 2.

As a second application let’s calculate the area of the circle.
We take the quadrant shown in Fig.18, divided into vertical
strips – the one at distance x from the centre having height
y, width δx, and area yδx. If we add together the areas of
all the strips, going from x = 0 to x = a (the radius of the
circle), we’ll get the area of the whole quadrant – which will
be approximate, if the strips have finite width, or exact if we
go to the limit δx → 0, with an infinite number of strips. The
differential element of area will be dA = ydx =

√
a2 − x2dx

and the whole area will then be the definite integral

A =

∫ a

0

√

a2 − x2dx. (4.18)

Again, this is not one of the standard integrals in Tables 1
and 2; and the trick we used in (4.15) doesn’t work this time
(try it!). We’ll come back to it later, but for now let’s try
another way of dividing the area into infinitesimal pieces:
we can take them to be circular strips as in Fig.19. Each
strip, of width δr, will have an area δA= (circumference) ×
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(width); but we just found the circumference to be 2π times
the radius, so dA = 2πrdr for a strip of width dr and the
total area becomes the definite integral

A =

∫ a

0
2πrdr = 2π

[

1
2r2

]a

0
= πa2, (4.19)

where we’ve used the first result in Table 1.

x-axis

y-axis

r
=

a

r

r
+

d
r

Figure 19

So, if you can’t see a way of integrating to get an area, try
looking for another way of choosing the differential element
of surface area. Rectangular Cartesian coordinates (x, y)
don’t give the simplest way of dealing with circles, but a
radius and an angle (r, θ) clearly do, the equation of the
circle being simply r = a instead of x2 + y2 = a2.

As a last application we’ll calculate a volume. You might
want to find how much water a big circular pond can hold
and to do that you’ll need to know how deep it is. Again it’s
easiest to use r, distance from the centre, as the independent
variable; and if we call the depth of the pond z we can
suppose z = f(r). To find the function you can go out in
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a boat with a long stick, dipping it in the water to find z
for a few values of r. If the pond is shallow it may be that
one or two values will give a fairly good approximation: in
the middle (r = 0) the depth might be d, while at the edge
(r = a, say) it will be zero. A shallow dish like that is often
well described by a parabola, as in Fig.20 which shows the
shape of the bottom.

r-axis

z-axis

pipe
lid

To underground cistern (Fig.21)

Figure 20 Figure 21

The general equation of a parabola has the form z = A +
Br+Cr2, where A,B,C are constants, which must be chosen
to fit with what we know. If we put the z-axis pointing
upwards, as usual, we know z = 0 when r = 0; so A must
be zero. And if you go out from the centre the depth must
be the same at points r and −r; so the linear term can’t be
there – you must put B = 0. Finally, at the edge, z = Cr2

must give d when r = a; so d = Ca2 and C = d/a2. The
equation of the pond bottom is thus

z = f(r) = (d/a2)r2 (4.20)

and now we can get the volume of water it can hold.
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How shall we choose the small elements of volume? If we
think of the water as a set of circular slabs, of thickness δz
and diameter r, each one will have a volume δz times its
surface area; and we’ve just found that the slab at height z
will have an area πr2. So the differential element of volume
will be dV = πr2dz, where z is related to the diameter of
the element according to (4.20). The differential dz, as we
know from p.22, is dz = (dz/dr)dr; and by differentiating
(4.20) we find (dz/dr) = (d/a2)(2r). The volume element
thus depends on the diameter of the slab:

dV = πr2(d/a2)2rdr = 2π(d/a2)r3dr. (4.21)

When the pond is full to the brim, the volume of water it
contains will be the definite integral

V = 2π(d/a2)

∫ a

0
r3dr = 2π(d/a2)

[

r4/4
]a

0

= 1
2π(d/a2)a4 = 1

2π(da2) (4.22)

– a beautifully simple result.

In hot counties where, there isn’t much rain, water is very
precious and if you’ve been lucky enough to get a pond full
the next problem is how to keep it – because if you just leave
it in the pond it will dry up in almost no time. The best way
of keeping water fresh is to make a big underground cistern,
cutting it out of the rock if you can and lining it with clay
so it won’t leak; then you can empty the water into it every
time the pond gets full. People have been doing this for
thousands of years: at Istanbul in Turkey there are some
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enormous cisterns that were made two thousand years ago
by the Romans – and they still hold water!

Fig.21 shows how a cistern might look: the water from the
pond in Fig.20 goes down into it through a pipe, when you
take the lid off, and to know how big to make it and how
many pondfuls it will hold you have to calculate volumes.
You can do that for the cistern provided you can make mea-
surements to find the relationship between the diameter r
and the height z above the bottom: once you have r = f(z)
you can express the volume V up to any water level, Z say,
as a definite integral,

∫ Z
0 dV just as we did for the shallow

pond. Think about it!

4.3 Integration ‘by substitution’

In this section we start looking for ways of getting an integral
that’s not in our list of ‘standard’ integrals (Tables 1 and 2)
– by relating it to an integral that is. The first method
is called integration by substitution and we’ve already
met a simple example of it. At the end of Chapter 3 there
was a note on “changing the variables”. This gave a useful
way of integrating something like, say, f(ax + b), when we
only knew the result of integrating f(x). We simply think of
ax + b as a new variable, calling it u say, and use the result
we know to get

∫

f(u)du – which we can then write in terms
of the original x.

The method is based on equation (2.22) in Chapter 2, which
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tells us how to differentiate a “function of a function”, namely
y = f(u), where u = u(x). The inverse operation, of in-
tegrating a function of a function, follows in the usual way:
for since y then becomes also a function of x

dy

dx
=

dy

du

du

dx

and, on integrating both sides of this equation with respect
to x, we get

y =

∫

dy

dx
dx =

∫

dy

du

du

dx
dx. (4.23)

In this Section we’ll look at examples of how this rule works.

• (i) y = f(x + a) = (x + a)n, a = constant. Denote
x + a by u and then use (4.23) to get

∫

(x + a)ndx =

∫

un dx

du
du =

∫

undu

=
un+1

n + 1
=

(x + a)n+1

n + 1
,

since, from (4.5), (dx/du) = 1/(du/dx) = 1. So in this
case we simply use the result in the Table of integrals,
substituting (x + a) in place of the original x. Note
that this works for all the functions listed, not just for
xn, since dx/du depends only on the form of u(x).

• (ii) y = f(ax) = (ax)n, a = constant. Now put ax =
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u and again use (4.23):

∫

f(ax)dx =

∫

f(u)
dx

du
du =

∫

f(u)(1/a)du

= (1/a)

∫

f(u)du = (1/a),

since (dx/du) = (1/a)(du/du) = 1/a. So we use the
result in the Tables, for

∫

f(x)dx, with ax in place of
x, but then divide by the constant a.

• (iii) y = f(ax + b), a, b both constants. Now put ax +
b = u and again use (4.23):

∫

f(ax + b)dx =

∫

f(u)
dx

du
du =

∫

f(u)(1/a)du

= (1/a)

∫

f(u)du.

So again we can use a tabulated result, with u in place
of the x, just dividing it by the constant a.

• (iv) y =
∫

f(u)du, u = u(x) = x2. In this case (4.23)
tells us that

∫

f(u)du =

∫

f(u)
du

dx
dx =

∫

f(x2)(2x)dx;

so the integral on the right can be replaced by that
on the left, which may be easier to evaluate. This
result is general: whenever the integrand is a function
of the new variable u, multiplied by the derivative
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du/dx, we can substitute the result on the left. Thus,
in this example,

∫

f(x2)(2x)dx =
∫

f(u)du, but more
generally

Any integral of the form I =

∫

f(u)
du

dx
dx

can be replaced by I =

∫

f(u)du. (4.24)

An important special case follows on using f(u) =
1/u, for then

∫

(du/dx)

u
dx =

∫

1

u
du = log u. (4.25)

In words, Whenever the numerator in an integrand is

the derivative of the denominator, the integral is the
logarithm of the denominator.

. Of course you don’t need to remember all possible cases,
as they’re so easy to get from (4.23). For example,

• (iv) y = sin ax, a = constant. Again put ax = u and
use (4.23):

∫

sin(ax)dx =

∫

sin u
dx

du
du = (1/a)

∫

sin udu

= (1/a)(− cos u) = −(1/a) cos(ax),

and finally
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• (v) y = 1
ax+b , a, b both constants. Substituting ax +

b = u,
∫

1

ax + b
dx = (1/a) log(ax + b).

It’s not always easy to choose a substitution that simplifies
things: you just have to try anything you can think of that
looks as if it might work. For example, when we were trying
to find the area of a quadrant, using Cartesian coordinates,
we found the result

A =

∫ a

0

√

a2 − x2dx

but didn’t know how to evaluate the integral. If you try
u2 = a2 − x2, to get rid of the square root, you’ll find it
doesn’t help. But trying x = a sin u does: it gives, before
starting the integration,

√

a2 − x2 =
√

a2 − a2 sin2 u = a
√

1 − sin2 u = a cos u.

With this substitution we’ll also need the factor dx/du to
put in the integrand. This will be dx/du = a cos u and now
we can do the integration:

∫

√

a2 − x2dx =

∫

a cos u × a cos udu = a2

∫

cos2 udu,

which looks easier. But how do we do it? We need to
remember something from Book 2, where we found how
to handle trigonometric functions like sin x and cos x. We
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found how to get the sine and cosine of a sum of two an-
gles, given in equations (4.22) of Chapter 5: these took the
forms sin A + B = sin A cos B + cos A sin B and cos A + B =
cos A cos B − sin A sin B. And now, by putting A = B = u,
we can do the integration! It becomes
∫

√

a2 − x2dx = a2

∫

cos2 udu = a2

∫

1
2(1 + cos 2u)du

= 1
2a2 [u + sin u cos u] ,

where we’ve used
∫

cos xdx = sin x from Table 1 (dividing
by the constant a = 2 for twice the angle) and sin 2u =
2 sin u cos u (from the formula above, for sin A + B).

All you have to do now is put in the limits to get the definite
integral.

At the lower limit x = 0, sin u = x/a = 0: so [...] = 0.

At the upper limit x = a, sin u = (x/a) = 1, u = 1
2π: so

[...] = [12π + sin 1
2π cos 1

2π] = [12π + 1 × 0] = 1
2π.

Thus, A = 1
2a2 [u + sin u cos u]

u=π/2
u=0 = a2π2/4 and the area

of the whole circle is four times this, namely πa2. This is
the result we already found in (4.19), but here we’ve had
to work much harder to get it – because we kept on with
rectangular Cartesian coordinates (x, y) instead of looking
for a transformation that would make the integral easier to
evaluate.

In this section we found a way of integrating by ‘reversing’
the rule for differentiating a ‘function of a function’. Let’s
now look for an integration rule based on the recipe for dif-
ferentiating a product of two functions
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4.4 Integration ‘by parts’

This time we start from the basic rule (2.21) for differenti-
ating a product of two functions, y(x) = u(x)v(x):

dy

dx
= u

dv

dx
+ v

du

dx
, (4.26)

where u and v are any two functions that we know how to
differentiate. This result can be ‘turned round’, as usual, by
noting that

Given
dy

dx
= f(x), then y =

∫

f(x)dx.

(Remember that differentiation and integration are simply
inverse operations, D and D

−1, and that using the integral
sign (

∫

) is just an alternative notation.) The ‘turned round’
version of (4.24) is thus

y = uv =

∫

u
dv

dx
dx +

∫

v
du

dx
dx (4.27)

and this means, rearranging the terms,
∫

u
dv

dx
dx = uv −

∫

v
du

dx
dx. (4.28)

If we can see that the integrand of an integral we can’t do has
the form u(dv/dx), by suitably choosing the two functions
u, v, then we can write it in terms of an integral of the
product v(du/dx). And if we’ve made a good choice of u
and v the new integral may be one that we can do.
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Again, there’s no general rule to tell you how to choose the
two functions. You just have to use your imagination, trying
out your guess to see if it makes things easier: sometimes it
does and sometimes it doesn’t. That’s why you need lots of
practice!

Here are a few examples to show how things work:

• (i) Suppose you want to evaluate I =
∫

x cos xdx.
This can be looked at as the left-hand side of (4.25) if
you choose

u = x,
dv

dx
= cos x.

In this case v = sinx and (4.25) becomes
∫

x
d

dx
sin xdx = x sin x −

∫

sin x
d

dx
(x)dx

= x sin x −
∫

sin xdx

= x sin x + cos x

• (ii) A somewhat similar integral is I =
∫

x log xdx.
This suggests you take

u = log x,
dv

dx
= 1, v = x,

so that (4.25) becomes
∫

log xdx = (log x)x −
∫

x
d

dx
(log x)dx

= x log x −
∫

x
1

x
dx = x log x − x.
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(This is how we got the result given in Line 3 of Table
1.)

• (iii) Often the integrals we want to get come in pairs.
For example,

P =

∫

eax cos(bx)dx,

Q =

∫

eax sin(bx)dx.

To get P , try putting cos(bx) = u and the other factor
eax = dv/dx, so that v = eax/a. Integrating by parts
then gives, from (4.25),

P = (eax/a) cos(bx) −
∫

(eax/a) × (−b sin( bx)dx

= (eax/a) cos(bx) + bQ/a.

In the same way (do it yourself!) you’ll find

Q = (eax/a) sin(bx) − bP/a.

By rearranging these results we get a pair of simulta-
neous equations (Section 2.3 in Book 2):

aP − bQ = eax cos bx, bP + aQ = eax sin bx,

which can easily be solved to get P and Q separately.
The result is (check it!)

P = eax(b sin bx + a cos bx)/(a2 + b2),

Q = eax(a sin bx − b cos bx)/(a2 + b2).
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There are many other special tricks for dealing with integrals
which don’t look do-able, but the examples above are enough
to be going on with. In the Exercises at the end of the
Chapter you’ll find other integrals to try, with hints to help
you get started.

4.5 When all else fails – do it

with numbers!

Very often, in applying the calculus, you’ll be wanting to
evaluate a definite integral; and you may not be able to find
any way of getting an expression for the indefinite integral
– so you can’t just put in values of x at the upper and lower
limits and take the difference. The only thing you can do
in that case is to use arithmetic to get the area under the
curve y = f(x) between ordinates at x = X1 and x = X2:
this is called numerical integration.

The simplest approximation is to divide the area into strips,
all of width h say, going from X1 to X2 and add up the areas
of all the strips. Let’s get the area under the simple curve
y = f(x) = (1 + x2)−1 between limits X1 = 0 and X2 = 1.0,
which is given by the definite integral

A =

∫ 1

0

1

1 + x2
dx

A very rough approximation is indicated in Fig.45(a), where
we take just three points on the curve y = f(x), with x1 =
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X1 = 0, x3 = X2 = 1.0 and one point in between at x2 = 0.5.
The area is thus divided into two (rather wide) pieces with
h = 0.5.

0.00.25 0.50.75 1.0 x

y-axis

0.00.25 0.50.75 1.0 x

y-axis

0.00.25 0.50.75 1.0 x

y-axis

Figure 22
(a) h = 0.5 (b) h = 0.25 (c) Simpson

The ordinates at these values of x will have heights y1, y2, y3

and the areas of the two pieces, formed by joining the points
(x1, y1), (x2, y2), (x3, y3), will be 1

2(y1+y2)h and 1
2(y2+y3)h,

respectively. The first strip will have area A1 = 1
2(y1 + y2)h

and the second (really a triangle in this case) will have A2 =
1
2(y2+y3)h. A first approximation to the total area will thus
be

A ≈ A1 + A2 = (1
2y1 + y2 + 1

2y3)h.

In Fig.22(a) the width of each strip is h = 0.5 (i.e. unit
width divided by two) and the total area comes out to be
A ≈ 1.55h = 0.7750. (Do the calculation for yourself!)

To get a better approximation, we can divide the whole area
into n strips, using a smaller value of the width h = 1/n,
instead of h = 1/2.

A ≈ (1
2y1 + y2 + y3 + .... + 1

2yn+1)h, (4.29)
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where only the first and last y values have coefficient 1
2 . This

is called the trapezoidal rule because each strip has the
form known in geometry as a ‘trapezium’.

Fig.22(b) shows the result of taking n = 4, which makes
h = 1/4, only half as wide as the two strips in Fig.22(a).
The ordinates at x1 = 0, x2 = h, x3 = 2h, x4 = 3h, x5 = 4h
(remember x = 0 gives the first ordinate!) then come out
as y1 = 1.0 y2 = 0.9412, y3 = 0.8 y4 = 0.64 y5 = 0.5; and if
you repeat the calculation you’ll find an approximate area
A ≈ 3.1312h = 0.7828.

The trapezoidal rule often gives poor results because the top
of each strip is closed with a straight line, nothing like the
curve we are trying to fill. It might be better to use a curved
line and the simplest one we can think of has an equation
of the second degree, y = A + Bx + Cx2, which describes a
parabola (Section 1.2 of Book 3 ). If we know three points
on the curve we can choose the constants A,B,C so that
the curve will pass through all of them. And if we do this
for each double-strip in Fig.22(b) they will fit into the curve
much better. Fig.22(c) shows the result of using two strips
(with h = 0.25) to make each double-strip (h = 0.5), with a
curved top. You choose the constants so that y1, y2, y3 will
define the first top. In the same way, y2, y3, y4 will define the
second top. Then you can use the new strips, with curved
tops, in place of the two wide strips in Fig.22(a).

How does this help us to get a better approximation to the
area under the curve? Well, we can get the area of a strip
with a curved top by integration, which is easy for a curve
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like y = A + Bx + Cx2. Then we can add the areas, just as
we did for Fig.22(a), expecting them to give a better result.

To do this in detail, let’s think of just one double-strip, using
new names for the variables; we’ll take x = x0 for the central
ordinate, with its top at y = y0. The upper and lower
boundaries of this piece will then be at x = x0 + h and
x = x0 −h, which we can call x+1 and x−1, respectively. To
make the arithmetic easy, we’ll measure x from x = x0 = 0
as origin. The three ordinates will then be at

x = x−1 = −h x0 = 0 x+1 = +h

and will have heights

y = y−1 y0 y+1.

Putting x = 0 must give y = A + B × 0 + C × 02 = y0, so
the first constant will be A = y0.

Putting x = −h will give y = A − Bh + Ch2 = y−1, while
with x = +h we get y = A + Bh + Ch2 = y+1. From these
two equations we can find the two unknowns, B and C.

Subtracting the first equation from the second, the A- and
C-terms will cancel, leaving 2Bh = y+1−y−1. So the second
constant must have the value B = 1

2(y+1 − y−1)/h.

If instead we add the two equations, and put in the value
already found A = y0, we get 2y0 + 2Ch2 = y+1 + y−1. So
C must have the value C = 1

2(y+1 + y−1 − 2y0)/h
2.

The next step is to find the area of the double-strip under
the curve y = A + Bx + Cx2. This is the integral

∫

ydx
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between limits at x = −h and x = +h:
∫ +h

−h
(A + Bx + Cx2)dx =

[

Ax + 1
2Bx2 + C(x3/3)

]+h

−h
.

When we put in the top and bottom limits and take the
difference we’ll get

Ah − A(−h) + C(h3/3) − C(−h3/3) = 2Ah + 2Ch3/3

and on substituting the values of A and C this becomes
(check this result carefully!)

∫ +h

−h
ydx =

h

3
[y−1 + 4y0 + y+1] . (4.30)

Now we can get the area under the whole curve, between
the limits at x1 and xn (the first and last ordinates). First
put y1, y2, y3 in place of y−1, y0, y+1 in the formula (4.30)
to get the area of the first double-strip; then do the same for
the next, using y3, y4, y5; and so on until you get to the last
ordinate yn. When all these small areas are added together
you’ll have the whole area A in the form

A = [(y1 + 4y2 + y3)

+(y3 + 4y4 + y5)

+(y5 + 4y6 + y7)

+....] (h/3)

= [(y1 + yn) + 2(y3 + y5 + ...) + 4(y2 + y4 + ...)] (h/3)(4.31)

This result is called Simpson’s Rule. It is easy to remem-
ber if you put it in words:
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Take the sum of the first and last ordinates,
y1 + yn. Add twice the sum of the odd ordi-
nates (y3, y5, ...), lying in between them. And
add four times the sum of the even ordinates
(y4, y6, ...). Then multiply the total by h/3.

The rule is easy to use and gives good results as long as the
interval h is not too large and the integrand is well-behaved
over the whole range of integration.

An example is shown in Fig.22(c), using the same curve as
in (a) and (b), with h = 0.25. The five ordinates needed are
easily found; and using them gives a much better approxi-
mation to the integral. According to Table 2, the indefinite
integral of y = 1/(1 + x2) is tan−1 x, the angle in radians
whose tangent is x: at the upper limit of the definite integral,
x = 1 and this is the tangent of the angle π/4 or 45 degrees,
while at the lower limit, x = 0 and is the tangent of the
angle zero. The difference of the two is the value of the def-
inite integral we were calculating – and it should therefore
be π/4. Since h = 1/4 our approximate area is 3.1416/4,
corresponding to π ≈ 3.1416. The approximation is good
to four figures after the point, even though we divided the
area into only four strips and worked only to four decimal
places. If you use a pocket calculator and carry more figures
you can easily get a better value π ≈ 3.141593 by using ten
strips instead of only four.

We’ve been talking about ways of getting definite integrals

by numerical methods but you can also differentiate a func-
tion in similar ways. In finding Simpson’s rule, for exam-
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ple, the function we wanted to integrate was represented,
piece-by-piece, by fitting its graph to a polynomial y =
A + Bx + Cx2; and by doing the integration we got the
area of each piece. We can just as easily differentiate the
polynomial to get the slope of the curve, for any value of x.
So let’s note, in passing, a result similar to (4.30) but giving
the value of dy/dx at a middle point x = x0 instead of the
area of the strip between ordinates at x−1 = x0 − h and
x+1 = x0 + h. The simplest approximation (draw a graph
to see what it means!) is

(

dy

dx

)

0

≈ 1

2h
(y+1 − y−1). (4.32)

That was with only three ordinates. If you want a much
better result you can use five instead, fitting the curve with
y = A+Bx+Cx2+Dx3+Ex4, finding the constants in terms
of ordinates at x0, x0 ± h, x0 ± 2h and then differentiating.
The result is surprisingly simple:

(

dy

dx

)

0

≈ 1

12h
[(y−2 − y+2) + 8(y+1 − y−1)] . (4.33)

If you ever get completely stuck in trying to solve a prob-
lem, don’t forget that you can always fall back on simple
arithmetic – after all that’s where mathematics first started!
Nowadays there are whole books on numerical methods and
even the smallest computers can do all the arithmetic for
you.
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Exercises

1) Verify that DD
−1 = D

−1
D = I when the operators D,D−1

are applied to the functions listed in Table 1. (Hint : First
work through the example given in the text (pages 94-94),
where f(x) = xn. Then try your hand at some of the other
functions, making similar steps.)

2) Find dy/dx for the functions y = f(x) listed in Table 2
and again verify that DD

−1 = D
−1

D = I.

3) Think of “multiply by x” as an operator x and verify
that Dx− xDx is equivalent to the identity operator, I, when
applied to any well-behaved function f(x). (This is true
for all values of x in the whole interval (−∞,+∞).) (Hint :
Keep the function f(x) in there, for the operators to work on,
dropping it only at the end when you’ve found the result.)

4) Use equation (4.13) to get an expression for the distance
s12 between points (x1, y1) and x2, y2) on a parabolic curve
where y = x2. Try to find some way of evaluating the in-
tegral, using the methods of Section 4.3. If you can’t, then
use the methods of Section 4.5 to get a good approximation.

5) Work through the calculation, starting on p.111, of the
volume of water in a shallow pond. But now suppose you’re
thinking of water (or wine) contained in a deep ‘goblet’ of
parabolic form z = A + Br + Cr2, z being the level of the
liquid relative to the base (where z = 0) and r the radius of
the container at level z.

Use the method explained in the text to choose the constants
A,B,C for a goblet of depth Z = 6 cm and width R = 2.5
cm at the brim.
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When the goblet is full to the brim how much wine will it
hold? And when it looks to be still roughly half full (z = 1

2Z)
how much is left?

6) Evaluate the following indefinite integrals (in which a, b
are constants):

(a)
∫

cx

ax2 + b
dx

(Hint : use (4.25))

(b)
∫

x cos x2dx

(Hint : put x2 = u)

(c)
∫ √

x√
x − 1

dx

(Hint : put
√

x − 1 = t2)

(d)
∫

x3
√

x2 − 1dx

(Hint : put x2 − 1 = t2)

(e)
∫

x2exdx

(Hint : use (4.28), putting ex = dv
dx )

7) Show how the results in the last Exercise will be changed
if you replace x by cx (c = constant).
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Chapter 5

Power series,
convergence, and
Taylor’s theorem

5.1 Sequences, series and sums

Even in Book 1 (Section 5.1) we came across sets of numbers
with very special (and useful!) properties. For example, the
“exponential series”

e = 1 + 1 +
1

2
+

1

6
+

1

24
+

1

120
+ ... (5.1)

is the sum of a sequence of terms 1, 1, 1/2, 1/6. 1/120, ...
which goes on forever. The general member of the sequence
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has the form 1/n!, where n! = 1 × 2 × 3 × 4 ... × n is the
product of the first n natural numbers, known as “factorial
n”, with 0! = 1.

Similarly, the sequence with terms a, ax, ax2, ax3, ... forms
a “geometric progression”. The sum of the terms in the
sequence, namely

S = a + ax + ax2 + ax3 + ... , (5.2)

forms a geometric series in which every term, ur say, de-
pends on the two numbers a and x. Thus

S = u1 + u2 + u3 + u4 + ... (ur = axr−1). (5.3)

Now it’s time to take these ideas a bit further.

In general, a sequence is any set of terms which can be ar-
ranged in a definite order, such as u1, u2, u3, ..., where the
subscript shows the ‘ordinal number’ of the term (first, sec-
ond, third, etc.). This sequence becomes finite when there
is a last term, un, for finite n. When there is no last term,
the terms going on ‘forever’, the sequence is infinite.

Very often the general term ur in a sequence is obtained
from its ordinal number r by some simple rule, as in the
geometric progression, where the rth term is ur = axr−1. In
the exponential series (5.1) the general term is ur = 1/r! and
the ordinal number r includes the case r = 0, which gives the
first term on the right in (5.1) – provided we define 0! = 1.
(Of course a product of no integers looks like nonsense; but,
by agreeing to write r! = 1 in the special case where r = 0,
the first term in the sequence falls into line with all the
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others, u0 = 1/0! = 1. Then r = 1 gives the next term,
u1 = 1/1! = 1, and after that everything is fine.)

When a sequence is infinite it may have a limit, namely
the value which the ‘last’ term we look at (ur, say) ap-

proaches as we take r bigger and bigger. This limit is written
limr→∞(ur); and when this limit is a finite number and is
unique (we get the same value in whatever way we find it!)
we say the sequence converges. In all other cases, the se-
quence is said to diverge: there will be no finite limit, or
the last term may ‘jump about’ (depending strongly on the
value of r. We’ll nearly always be talking about convergent

sequences.

When the terms in a sequence are summed, as in (5.1) and
(5.2), the result is called a series. It is also useful to think
about partial sums in which only the first n terms are
included. The partial sum, or the ‘sum to n terms’, is thus
defined by

Sn = u1 + u2 + u3 + u4 + ... un =

n
∑

r=1

ur. (5.4)

Just as an infinite sequence may either converge or diverge,
the series (i.e. the sum of all the terms in the sequence)
may converge or diverge. The series converges when the
partial sum (5.4) approaches a unique and finite limit S, as
n becomes bigger and bigger. And we write this as

S = lim
n→∞

Sn. (5.5)

Otherwise the series diverges.

120



The series (5.1) is convergent. But the series (5.2), which
depends on the variable x, is convergent only when the mag-
nitude of x is less than 1 i.e. when |x| < 1. Thus, for x ≥ 1
the value of Sn increases without limit as n → ∞ and the
series therefore diverges.

In Book 1, where we first met series in Section 5.1, we just
supposed that a series would converge when the terms got
smaller and smaller; but now let’s try to be more precise.
We ask the general question:

How can we tell if a given series converges?

It is certainly necessary that the sequence of terms in (5.4)
converges – that as n becomes indefinitely large then un → 0.
For this means that on adding further terms the partial sum
Sn will not change any more. But this is not enough: it is
not sufficient to guarantee that the sum of all the terms
up to un will converge to a finite result. For example, look
at the series

1 +
1√
2

+
1√
3

+
1√
4

+ ... +
1√
n

+ ... .

The nth term, 1/
√

n does go to zero for n → ∞; but Sn does

not. To see that this is true, note that all the terms that
come before un are greater than un, so adding all the first
n terms together will certainly give you something bigger
than n times the last one: Sn > n × (1/

√
n). In other

words, Sn >
√

n. As n becomes indefinitely large, so does
Sn and the sseries therefore diverges.

There are various conditions which will guarantee the con-
vergence of a given series, being both necessary and suf-
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ficient. Some of these convergence tests are based on
making a comparison with a series that is known to con-
verge (e.g. the geometric series, whose partial sum Sn was
found in Book 1, equation (5.1), for any value of n): if the
terms in the given series are all smaller than the correspond-
ing terms in a convergent geometric series, then the given
series must also converge. Other tests are based on com-
paring the nth term of the given series with the one that
follows it, to see whether the terms are getting bigger or
smaller. We’ll use only one of these ratio tests, that due
to the French mathematician d’Alembert (1717- 1783):

If lim
n→∞

∣

∣

∣

∣

un+1

un

∣

∣

∣

∣

< 1 the series converges. (5.6)

Otherwise the series diverges (or, if the ratio is 1, may need
further testing).

Let’s test two of the series we’ve used already:

Example 1. The geometric series.

Suppose we didn’t know the sum of the geometric series
1 + x + x2 + x3 + ... (which is (5.2) with a = 1), but only
the general term un = xn. The limit in (5.6) is then

lim
n→∞

∣

∣

∣

∣

un+1

un

∣

∣

∣

∣

= |x| (5.7)

and the series converges as long as |x| < 1. For |x| = 1, (x =
±1) the test doesn’t say anything: but an infinite sum of 1s
is clearly infinite and the series diverges.

Example 2. The exponential function.
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The function y = ex = exp x is defined by the series

y = ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ ... (5.8)

and reduces to (5.1) on putting x = 1. The general term is
thus xn/n! and the ratio in (5.6) becomes

un+1

un
=

xn+1

(n + 1)!

n!

xn
=

x

n + 1
. (5.9)

On going to the limit n → ∞, we see

lim
n→∞

∣

∣

∣

∣

un+1

un

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

x

n + 1

∣

∣

∣

∣

= 0 (5.10)

and the series therefore converges for all values of the vari-
able x. Thus, y = exp x is a unique function of the real vari-
able x, for all values of x in the interval (−∞,+∞). When
we first studied some of the remarkable properties of this
function (in Chapter 4 of Book 2) we got them mainly by
using simple examples and guesswork: we didn’t even know
if we could use ex as if it were a single number, because we
didn’t know much about convergence and limits. We just
supposed that ex and ey could be multiplied together by
multiplying every term of one series by every term of the
other and adding the results; and it looked as if the answer
should be the function ex+y, obtained from the same series
but with the variable x + y in place of x or y. But no real
mathematician would dare to do a thing like that without
first proving that every step made sense! Now we’ve taken
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the first step, by showing that the exponential series has a
limit for every value of the number x and that this limit is a
unique finite number. The next step (which we’re not going
to take!) is to show that when we multiply two convergent
series the result will also be a convergent series, whose limit
will be the product of the two separate limits. For now, we’ll
just assume that these ‘common sense’ ideas are correct.

5.2 Power series and their

convergence

Functions like (5.2) and (5.8) are examples of power series,
consisting of ordered sums of powers of the independent vari-
able x, each with a constant coefficient: in general

y = f(x) = a0 + a1x + a2x
2 + a3x

3 + ... , (5.11)

in which a0, a1. a2 ... are numerical constants, is a power
series representing the function f(x). In this case the powers
are positive integers, including zero (which gives the leading
term a0 = a0x

0).

The condition for convergence (5.6) becomes

lim
n→∞

∣

∣

∣

∣

an+1x
n+1

anxn

∣

∣

∣

∣

= lim
n→∞

|x|
∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

< 1, (5.12)

which can also be written

|x| < lim
n→∞

∣

∣

∣

∣

an

an+1

∣

∣

∣

∣

= R (5.13)
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Here R, the limit standing on the right in the last equation,
is called the radius of convergence of the series. If you
draw a circle of radius R around the point with x = 0 on the
x-axis, then the series will converge only for x values lying
within the circle (i.e. between −R and +R.

You’ll be wondering why we’re talking about the radius of a circle!

It’s because mathematical analysis is a big subject and it deals

with all kinds of numbers, including the complex numbers (Book 1,

Chapter 5) such as z = x+ iy, where i is the ‘imaginary unit’ with

the property i2 = −1. Complex numbers like x + iy, depend on

pairs of ‘ordinary’ (real) numbers, x and y, and have a ‘magnitude’

|z| which is also real and is given by |z|2 = x2 + y2. So, if you

think of a number pair as the coordinates of a point in a plane,

then |z| will be its distance from the origin (x = y = 0); and the

condition |z| < R will hold for all points inside the circle of radius

R – not only for the real numbers represented by points on the

x-axis between −R and +R. But analysis, applied to functions of

a complex variable will need a whole book to itself!

For the geometric series (5.2), R = 1; but for the exponential
series (5.8), R = ∞. The exponential series y = exp z is
in fact convergent for all values of the variable z, real or
complex. This means that the other series, for functions
such as y = sin x, y = cos x, already used in Book 1, will
also be convergent for all values of the variable x, since they
are simply combinations of exponential functions exp ix and
exp−ix, namely ez for two imaginary values z = ±ix of the
independent variable. In the next Section we start to look at
the general question of how to represent any given function
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as a power series.

5.3 Taylor’s Theorem

At the end of the last Chapter (in Section 4.5) we used a
three-term power series y = f(x) ≈ A + Bx + Cx2 to repre-
sent any given function y = f(x) in the interval from (x0−h)
to (x0 + h), x0 being the mid-point of the interval. In that
way we were able to get the area of a double-strip, of width
2h, under the curve, in terms of the corresponding ordi-
nates (function values) y−1 = f(x0 − h), y0 = f(x0), y+1 =
f(x0 + h). And by adding the areas of many such strips we
could estimate the value of the definite integral, represented
by the area under the whole curve between any given limits
x = a and x = b. We also noted that using a five-term ap-
proximation y = A + Bx + Cx2 + Dx3 + Ex4 would give a
better result.

Let’s now take a more general case, using a polynomial of
the nth degree,

f(x) = a0 + a1x + a2x
2 + a3x

3 ...

+anxn, (5.14)

in which there are (n + 1) constant coefficients a0, a1, ...
an. The coefficients could be found, again, in terms of the
ordinates y0, y1, ... yn corresponding to a set of x-values
x0, x1 = x0 + h, x2 = x0 + 2h, ... xn = x0 + nh (using h for
the common spacing between one ordinate and the next).
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But instead of finding the coefficients in that way, which
is quite difficult, we’ll use a beautiful trick discovered by a
student of Newton, called Taylor, He noticed that every one
of them could be found by differentiating the function f(x)
and then putting x = 0. Thus, a0 is the only terms left when
x = 0 – for all the powers of x are then zero and we are left
with f(0) = a0 + a1 × 0 + a2 × 0 + ... – and so a0 = f(0).

Next we differentiate and use the usual shorthand notation
for the results:

f ′(x) =
df

dx
= 0 + a1 + 2xa2 + 3x2a3 + 4x3a4 + ..

f ′′(x) =
d2f

dx2
= 0 + 0 + 2a2 + 6xa3 + 12x2a4 + ...

f ′′′(x) =
d3f

dx3
= 0 + 0 + 0 + 6a3 + 24xa4 + ...

f (4)(x) = D
4f(x) = 0 + 0 + 0 + 0 + 24a4 + ... ,

and so on. (Note that the raised integer in f (4)(x) = D
4f(x)

is used to mean “f(x) differentiated 4 times” and that the
symbol D, already used in earlier Chapters (e.g. in equation
(4.2)) stands for the operator (d/dx) – here applied 4 times.)

Finally, let’s put x = 0 in all the above equations. The
results are

f(0) = a0, f ′(0) = a1, f ′′(0) = 2a2, f ′′′(0) = 6a3,

... , f (m)(0) = m!am, ... , (5.15)

where the general term (shown last) contains the factorial

m! = 1.2.3. ... m. Using (5.15) in (5.14) we obtain Taylor’s
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Theorem for a finite polynomial of the nth degree:

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) +

x3

3!
f ′′′(0) + ..

+
xn

n!
f (n)(0). (5.16)

Note that the series ends after n+1 terms, derivatives higher
than that with m = n all being zero; and that the expansion
of f(x) is around the origin, x = 0, not around a point in
the middle of the range over which the series may be needed.
Also the result has not been proved for any function – only
for a polynomial. But it’s a good start!

A more general form of the theorem, in which the function
f(x) is expanded about any point, not just about x = 0, can
be found as follows. We introduce a new variable x̄ = x+h,
so that when x = 0 x̄ will take the value x̄ = h, and then
look at the function f(x̄) = f(x + h). Keeping x constant,
we can then move along the curve y = f(x̄) by changing h
and thinking of y = f(x + h) as a new function y = g(h).
Since x̄ and h differ only by a constant (x), the derivatives
dy/dx̄ and dy/dh, will be equal; and this will be true also
on repeating the differentiation. Thus

g(h) = f(x̄), g′(h) = f ′(x̄), g′′(h) = f ′′(x̄), etc.

Now let’s use (5.16) on the new function g(h), getting

g(h) = g(0) + hg′(0) +
h2

2!
g′′(0) +

x3

3!
g′′′(0) + etc
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and finally put this in terms of f(x + h) = g(h) and its
derivatives, noting that h = 0 corresponds to x̄ = x. The
result is

f(x + h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(x) +

... +
hn

n!
f (n)(x), (5.17)

where the function and its derivatives, on the right, are all
evaluated at a general point x, rather than at the origin
x = 0. In many applications, this is a more useful form of
Taylor’s expansion than the special case (5.16).

As long as we consider only the expansion of a finite poly-

nomial, the above results are generally valid; but wouldn’t
it be nice if they could be used for any kind of function that
could be differentiated! It seems likely that this will be so,
because we already know that a given function can usually
be fitted fairly accurately, at least over a short range, by a
polynomial with only a few terms; and by taking more and
more terms one could hope to get an almost exact repre-
sentation over the whole range in which the function was
‘well-behaved’. But to prove that this can be done is diffi-
cult: it requires us to talk about the remainder Rn – the
sum of the remaining terms when we stop after the first n –
and that is stuff for real mathematicians. Usually we’ll just
assume that Taylor expansions can be found for all differ-
entiable functions. The examples that follow will show how
this can be done

Some examples of Taylor expansions
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Although we aleady know some series representing common
functions, such as exp x, sin x, cos x, it’s interesting to see
how they also follow from Taylor’s theorem, provided we
know how to differentiate the functions. Let’s look at one
or two of them and then take a new one.

Example 1. The exponential and logarithmic series

Suppose we didn’t have a series for the function ex, but
only knew that it was a function whose first derivative f ′(x)
gave us back the function itself: f ′(x) = f(x). In that
case, by differentiating again, and again, we can find all the
derivatives. Thus,

Df =
df

dx
= f ′(x),

D
2f = DDf = f ′′(x),

D
3f = DD

2f = f ′′′(x), ... , (5.18)

and so on. It follows at once, using (5.16) that

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+ ... . (5.19)

This agrees with the series given in (3.22); but here we have
found it by solving the differential equation f ′(x) = f(x),
first stated in (3.24).

When we first defined the logarithmic function y = log x, we
didn’t find a series for it: instead we had to express it as an
integral, log x =

∫

(1/x)dx. Now we’ll show how it can also
be written as a Taylor expansion.

130



Since 1/x is a ‘nasty’ function, which ‘blows up’, along with
all its derivatives, at the point x = 0, let’s change to a new
variable t by using 1 + t in place of x in the integral form.
Thus

log x =

∫

1

1 + t

dx

dt
dt =

∫

1

1 + t
dt = log(1 + t).

If now we take the definite integral, by putting in limits
t = 0 (lower) and t = x (upper), we find

∫ x

0

1

1 + t
dt = [log(1 + t)]t=x

t=0 = log(1 + x), (5.20)

since the lower limit is log 1 = 0.

We can now get the series we want by noting that (1+t)−1 is
the sum to infinity of a simple geometric progression (Book
1, Section 5.1):

(1 + r)−1 = 1 + r + r2 + r3 + ... ,

with the ‘common ratio’ r put equal to −t. On using this
result as the integrand on the left in (5.20) and integrating
term by term it follows that

log(1 + x) = x − x2

2
+

x3

3
− x4

4
+ ... . (5.21)

It is important to note that the series converges only for
values of x in the range −1 to +1.

Example 2. The sine and cosine series
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The functions sin x and cos x are periodic, their values re-
peating whenever the variable x increases by 2π or. with a
change of sign, by π. Some of their properties are summa-
rized in Book 2, Chapter 4; and we already know from (3.7)
that, using the D-notation as in (5.19),

D sin x = cos x, D cos x = − sinx. (5.22)

From these properties we get, by repetition,

D
2 sin x = D cos x = − sin x,

D
3 sin x = D(− sinx) = − cos x,

D
4 sin x = D(− cos x) = sin x,

etc., where each term follows at once from the one before it.

To get the Taylor expansion of sin x, all these derivatives
must be evaluated – but only at x = 0; and that is easy!
The sine terms are all zero, while the cosine terms are all
±1, the sign changing in going from one non-zero term to
the next. On putting the results in (5.16) we get

sinx = x − x3

3!
+

x5

5!
+ ... . (5.23)

The Taylor series for the cosine follows in the same way,
starting from D cos x = − sin x and finding

D
2 cos x = −D sinx = − cos x,

D
3 cos x = D(− cos x) = + sin x,

D
4 cos x = D(sinx) = cos x,
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etc., and when x = 0 the derivatives again take only the
values 0,±1. Substitution in (5.16) then gives

cos x = 1 − x2

2!
+

x4

4!
+ ... . (5.24)

Like the exponential series, these expansions converge for all
values of x in the infinite interval (−∞,+∞).

Example 3. The binomial series

We met the binomial series in Section 3.1, where we ex-
panded (a+ b)n and found the first three terms of the series
in (3.2). If we put a = 1, b = x the series becomes

(1 + x)n = 1 + nx +
n(n − 1)

2!
x2 +

n(n − 1)(n − 2)

3!
x3 + ... .

(5.25)
The result was used in differentiating the function y = xn,
where n was a positive integer, but now we want to show that
the same series holds good for all real values of n, positive
or negative, rational or irrational. Taylor’s expansion (5.16)
allows us to do that.

Here the function we’re expanding is f(x) = (1+x)α, where
both x and α are now any real numbers. And we’ll need
all the derivatives, f ′(x) = Df(x), f ′′(x) = D

2f(x), ... ,
even though we don’t yet know how to differentiate (1+x)α

for general values of α. To start, let’s just suppose we can
use the same rule as for when α is an integer: in that case
D(1+x)α = α(1+x)α−1 (in words “multiply by the exponent
α and then reduce α, in the exponent, by 1”).
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Using this rule, the derivatives we need will be

f ′(x) = α(1 + x)α−1, f ′′(x) = α(α − 1)(1 + x)α−2,

f ′′′(x) = α(α − 1)(α − 2)(1 + x)α−3 ... ,

and so on. And when we put x = 0 the results are

f ′(0) = α, f ′′(0) = α(α − 1), f ′′′(0) = α(α − 1)(α − 2),

and soon. From (5.16) it then follows that the first few terms
of the Taylor expansion are

(1 + x)α = 1 + αx +
α(α − 1)

2!
x2 +

α(α − 1)(α − 2)

3!
x3 + ..

(5.26)
This is exactly the same as (5.25), except that instead of the
integer n we are now supposing α is any real number.

Of course we should really prove that the differentiations
can be done just as we did in differentiating xn in Section
3.1. This is a bit tough, so we’ll put it in small print and
you can come back to it later.

Note: how to differentiate xα for any α

Look back at the section starting with equation (3.26). This equa-
tion defines the logarithmic function as the inverse of the expo-
nential: in general, if p = eq we can turn it round and say q = log p
(it is the power to which you must raise the base e to get back p).
So we can also write

p = eq = elog p, for any number p.
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This is an identity: the right-hand side of the equation p = elog p

is just a different way of writing the same thing,p.

Here we have to deal with y = xα; and it helps (you’ll see why
in a minute) to bring in the logarithm by writing x = elog x. For
then, using what we know from (3.23), we can say

y = xα = eα log x

and we can differentiate this by ‘changing the variable’ according
to (2.22). To do this, we put α log x = u, a new variable, and
then use y = eu.. We know that (dy/du) = y = eu (the basic
property of the exponential function); and we know from (2.22)
that (dy/dx) = (dy/du)(du/dx). So now we can say

dy

dx
= eα log x

d

dx
(α log x) = xα

d

dx
(α log x) = xα(α

1

x
) = αxα−1

where we’ve used the property (3.28) of the logarithmic function.
The final result is thus

y = xα :
dy

dx
= αxα−1 (5.27)

– just as if α were an integer.

You can find a Taylor expansion of anything about any point
where the derivatives all exist – given the patience to do all
the differentiations!

Exercises

1) Obtain power series for the following functions around
the point x = 0:

(a) sin x/x, (b) cos x/x,
(c) (1 − cos x)/x2, (d) (sin x − x)/x3.
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What are the limiting values of the functions (if they exist)
for x → 0?

(Hint : Use the series in (5.23) and (5.24))

2) Derive the expansion

tan x = x +
2x3

3!
+

16x5

5!
+ ... ,

by evaluating the first few derivatives in a Taylor series.
(Hint : You need to differentiate tan x several times, putting
x = 0 in the results; and don’t forget that sec2 x = 1 +
tan2 x.) Can you show that the next term will be 272x7/7! ?

3) Use the same method to obtain the following expansions:

(a)

ex cos x = 1 + x − 2

3!
x3 − 22

4!
x4 − 22

5!
x5 + ...

(b)

ex sin x = x + x2 +
2

3!
x3 − 22

5!
x5 − 22

6!
x6 + ...

Sketch the functions for some small values of x and explain
why the series contain both odd and even powers of the
variable, while the series in (5.23) and (5.24) do not.

4) From the expansion (5.26) of (1 + x)α, obtain the series

(x + y)α = xα + αxα−1y +
α(α − 1)

2!
xα−2y2

+
α(α − 1)(α − 3)

3!
xα−3y3 + ...

and show that it converges for y/x < 1 for all real values of
α.
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Chapter 6

A quick look at some
things you’ll need later

6.1 Functions of more than one

variable

At the beginning of this book, in Section 3.1, we noted that a
function may depend on more than one variable: in climbing
a hill we might go a distance x towards the East, and then
a distance y towards the North (both measured relative to
an x-axis and a y-axis, starting at the origin O in Fig.23).
At the end, we’ll be at a some height z above the horizontal
plane which contains the x- and y-axes: we’ll have moved
a distance z along the vertical direction – indicated by the
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z-axis.

O

P(x,y,z)

x-axis

y-axis

z-axis

y
x

z

Figure 23

(If you’re not sure about what all this means, look back at
Book 2!)

The final point P which you reach has coordinates x, y, z
and is referred to as “the point P(x, y, z)”. And if you hold
z fixed and keep walking, going neither higher nor lower,
then your path will be a contour line: it will be described
by a relationship f(x, y) = z = constant. There will be a
contour line for any value of the height, as long as you stay
on the surface, giving a whole ‘family’ of contours, z1 =
f1(x, y), z2 = f2(x, y), ... etc.. (If you’ve ever studied a map
you will know that families of contour lines can give a clear
picture of the form of the land you’re walking over. For
example, near the top of a hill the contours may be roughly
circular, with the top at P being near the middle).
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In this example z = f(x, y) expresses the height of any point
on the surface as a function of two independent variables,
the distances moved along the x and y directions, but in
Science we’re always meeting relationships of this kind in
which the variables have nothing to do with distances. So
we need to extend what we know about functions of one
variable to functions of two, or many, variables. It’s easy
to do this for two variables, because we can get help from
pictures, but once we’ve learnt how to express the pictures
in mathematics we can do the same thing for any number of
variables: so let’s start from Fig.23.

In going along the y direction, we kept x fixed with the value
x = 0 so that only y and z were changing as we went up the
steep slope, with z = f(0, y) – a function of one variable
only. After going in the y direction (North, say) until y = 1,
we turn and go towards the East. The path for this direction
will now be described by z = f(x, 1), again a function of one
variable only – but a different one.

Now in the Calculus we’re interested in what happens when
the variables change only by very small amounts, δx, δy, δz,
and in ratios such as δz/δx, which measure rates of change,
or slopes. If we’re at the top of the hill in Fig.23 and go a
little bit (δx) further in the x direction, then the change in
z will be

δz ≈ d

dx
f(x, y)y fixed × δx;

but if we went in the y direction, by δy, it would be

δz ≈ d

dy
f(x, y)x fixed × δy.
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It’s convenient to rewrite these two changes using differ-

entials instead of ‘deltas’ (look back at Chapter 2 for a
reminder of what they are): with this notation, the first
change becomes

dz =

(

∂f

∂x

)

y

dx

and the second becomes

dz =

(

∂f

∂y

)

x

dy.

When both changes are made together the total change will
then be

dz =

(

∂f

∂x

)

y

dx +

(

∂f

∂y

)

x

dy. (6.1)

(Note that, just as we’ve often used dy/dx and df/dx to
mean the same thing when y = f(x), we count ∂z/∂x and
∂f/∂x as the same when z = f(x, y); it doesn’t matter if we
use the same name for the quantity z or the function f(x, y),
which tells us how to get it from x and y)

The quantities in big round brackets, containing ‘curly’ d’s,
are called partial derivatives. They are just like ordi-
nary derivatives except that they are defined for functions
of more than one independent variable and the subscript
shows any variable that is held fixed (i.e. treated like a
constant). Thus, for a function f(x, y) there are two par-
tial derivatives (∂f/∂x)y and (∂f/∂y)x. They are defined
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(without the pictures!) by

(

∂f

∂x

)

y

= lim
δx→0

(

f(x + δx, y) − f(x, y)

δx

)

,

(6.2)
(

∂f

∂y

)

x

= lim
δy→0

(

f(x, y + δy) − f(x, y)

δy

)

– exactly as we defined ordinary derivative in Chapter 2,
Section 2.3, which you should read again, just to make sure.

Example

As an example of how things go, you can look at the function

z = f(x, y) = x2 − 2xy − 3y2

and find the two first derivatives, one for each of the two
variables. Thus

(

∂f

∂x

)

y

= 2x − 2y,

(

∂f

∂y

)

x

= −2x − 6y.

It’s easy; all you have to do is differentiate with respect to
one variable, treating the other just as if it were a constant.
And with only two independent variables you can even drop
the subscripts, which only mean “the other one”. That’s
what we’ll do from now on.

Now try some of the Exercises at the end of the Chapter.

Towards the end of Section 2.3, in talking about functions of
only one variable, we were able to define ‘higher’ derivatives
by differentiating the ‘first’ derivative to get ‘second’ and
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‘third’ derivatives: d2f/dx2 and d3f/dx3, etc.; and we can
do the same for functions of more than one variable. Thus,
if z = f(x, y) we can find first derivatives, such as (∂f/∂x)
in (6.2), and then go on to get
(

∂2f

∂x2

)

=

(

∂

∂x

)(

∂f

∂x

)

,

(

∂2f

∂x∂y

)

=

(

∂

∂x

)(

∂f

∂y

)

,

(6.3)
and so on.

We have to take care with the order of the differentiations:
usually, in

(

∂2f

∂x∂y

)

,

the operation nearest the function f is the one you do first
– but some books use the opposite rule, so watch out!. The
rule used here is close to the one in which the operators
Dx,Dy are used. The second derivative we’re talking about
can be written in this way as DxDy f , which is simpler and
clearer. And, just as with functions of one variable, we can
make things even easier: the notations for first derivatives
are

(

∂f

∂x

)

= Dx f = fx,

(

∂f

∂y

)

= Dy f = fy, (6.4)

while for the second derivatives we have
(

∂2f

∂x2

)

=

(

∂

∂x

)(

∂f

∂x

)

= DxDx f = fxx (6.5)

and
(

∂2f

∂x∂y

)

= DxDy f = fxy. (6.6)
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(Notice that we don’t need to put primes on the derivatives,
one each time we differentiate, because the subscripts on
fx, fxy, in (6.5) and (6.6), tell us which differentiations we’ve
done and how many.) The older books use the full notation,
on the left in these equations, which goes back to Leibnitz
and the early days of the Calculus, but we’ll often use the
simpler forms shown on the right. So be sure you know
about them all.

You can see what the derivatives mean, with the help of
Fig.24, which shows what happens when x → x + dx and
y → y + dy.

A

B

C

D

z

y x

A: z = f(x, y)

B: z = f(x + dx, y)

C: z = f(x + dx, y + dy)

D: z = f(x, y + dy)

Figure 24

Example.

Let’s find some second derivatives for a function of the third
degree.

z = f(x, y) = x3 + 4x2y − 6xy2 − 2y3.
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Differentiating, we get first derivatives

(∂f/∂x) = 3x2 + 8xy − 6y2, (∂f/∂y) = 4x2 − 12xy − 6y2,

and differentiating again we find four second derivatives:
(

∂2f

∂x2

)

= 6x + 8y,

(

∂2f

∂x∂y

)

= 8x − 12y,

(

∂2f

∂y∂x

)

= 8x − 12y,

(

∂2f

∂y2

)

= −12x − 12y.

Note that in the ‘mixed’ derivatives, where you differentiated
once with respect to x and once with respect to y, the results
came out to be exactly the same: it didn’t matter which one
you did first. This is true for all the functions we have
called “well behaved” (meaning there is a unique value of
the dependent variable z for every choice of the independent
variables, the function is continuous and smooth, and so on).

Figure 24 shows four neighbouring points A,B,C,D on the
surface: they are vertically above the corners of the rectangle
at the bottom of the picture, which lies in the horizontal xy-
plane. The broken lines indicate a plane passing through A,
parallel to the base, so you can see the slopes of the edges
of the sloping face. Thus, the slopes of AB and AD are

slopeAB =

(

∂f

∂x

)

= Dx f = fx(x, y),

slopeAD =

(

∂f

∂y

)

= Dy f = fy(x, y).

Here the forms on the right show also the variables for Point
A where the derivatives are evaluated. The slope of side BC,
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at Point B will be

slopeBC =

(

∂f

∂y

)

= Dy f = fy(x + dx, y).

Notice that this is the slope in the y direction, where only
x is changing, but it is evaluated using the variables for
Point B. Why do we give no formula for the slope in the x
direction? Simply because only y is changing as we go along
BC and the ‘x-slope’ is thefore zero. Now look at points C
and D and write down the slopes of the edges BC and CD.
(Make a big drawing of Fig.24, so you can write on it and
see what you’re doing!)

In summary, starting from the point A, at height z = f(x, y),
you can increase x a little bit keeping y fixed, which gets you
to B where z = f(x + dx, y). Then you can increase y by
a small amount dy, which gets you to C where z = f(x +
dx, y+dy); and then to D, whose height is z = f(x, y+dy). If
you know the slopes in the x- and y-directions at the starting

point A, you can estimate the heights of the other points
B,C,D without re-calculating the function: for example, the
height of B will be z + dz with dz ≈ (∂f/∂x)dx, where
the approximation is good if dx is very small. This means
you are taking the edge AB as a straight line, touching the
surface at Point A, when in fact it may be slightly curved.
(Look back at Fig.14 in Chapter 2.) The same is true for
point D, using the slope of AD, which is in the y-direction.
But to get z + dz at point C you have to start at B; and
you don’t know the slope of the edge BC, though it looks
as if it will be roughly the same as that of AD. So we must
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allow for two changes – the change in the function value f
and the change in its first derivative f ′

y as you go from A to
B. To estimate the change in fy as x changes from x at A to
x + dx at B, we need to introduce a second derivative. The
y-slope fy is also a function of both x and y, so we can say

Dx fy(x, y) = DxDy f(x, y) = fxy(x, y). (6.7)

In the same way, the x-slope fx(x, y) of AB will change at
the rate

Dy fy(x, y) = DyDx f(x, y) = fyx(x, y). (6.8)

It follows that

slopeBC ≈ slopeAD + fxy(x, y) × dx

and, on multiplying by dy, that the increase in z on going
from B to C will be

fy(x, y)dy + fxy(x, y)dxdy.

It’s now clear that, to allow for the change of slope as we go
from one edge of the piece of surface ABCD to the opposite
edge (e.g. from AC to BD), we have to know the ‘mixed’
second derivatives fxy and fyx. And to allow for changing
slope fx as we go along either edge (e.g. from A to B) we
also have to know the second derivatives fxx and fyy.

Now that we have a picture of what we’re doing, we can
use the mathematics of Section 5.3. But if you find this a
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bit difficult you can skip the small print and go straight to
equation (6.12).

Taylor’s theorem in the form (5.17) gives us a way of ex-
panding any function f(x + h) around the general point x,
in powers of h. If we use our new notation for the derivatives
it takes the form

f(x+h) = f(x)+hfx(x)+(h2/2!)fxx(x)+(h3/3!)fxxx(x)+. ,
(6.9)

where h is the change we’re making in x and all the deriva-
tives are evaluated at the starting point h = 0. For a func-
tion of more than one variable, there’s not much to change:
f(x, y) now gives the height z at Point A in Fig.24 and if we
keep y fixed, moving along the surface ABCD only in the
x-direction, (6.9) can be re-written as

f(x + h, y) = f(x, y) + hfx(x, y) + (h2/2!)fxx(x, y)

+ (h3/3!)fxxx(x, y) + ... , (6.10)

where all the derivatives are partial derivatives, with y treated
as a constant.

Now let’s think about changing the second variable y, start-
ing from A and letting y → y + k while the first variable
is kept fixed, with its original value. The function f(x, y)
and all its derivatives – also functions of x, y – can then be
expanded in powers of k, using y in place of x and k in place
of h. So moving across the surface ABCD in the y-direction,
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for any fixed value of x, we can say

f(x, y + k) = f(x, y) + kfy(x, y) + (k2/2!)fyy(x, y).. ,

fx(x, y + k) = fx(x, y) + kfyx(x, y)... ,

fxx(x, y + k) = fxx(x, y)... . (6.11)

Notice that, when there are two subscripts on a function,
the first one refers to the latest variable to be changed.

Finally, we can use the results in (6.11) to expand f(x +
h, y + k) in powers of both h and k. Changing y to y + k in
(6.10), the first three terms give (up to second order in the
small quantities h, k)

f(x + h, y + k) =

f(x, y + k) + hfx(x, y + k) + (h2/2!)fxx(x, y + k) + ... .

And now we can substitute for the three functions on the
right, which are given in (6.11). The result is

f(x + h, y + k) =

f(x, y) + kfy(x, y) + (k2/2!)fyy(x, y) + ...

+ h × [fx(x, y) + kfyx(x, y) + ... (Term 2),

+ (h2/2!) × [fxx(x, y) + ... (Term 3),

To make this look pretty, and easy to remember, we can
re-arrange it:

f(x + h, y + k) = f(x, y)

+ hfx(x, y) + kfy(x, y)

+ 1
2 [h2fxx(x, y) + 2hkfyx(x, y) + k2fyy(x, y)].

(6.12)
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Some consequences

What comes out from what we have done? The first con-
sequence is one that follows from (6.12): it is that for any
well-behaved function of two independent variables the order
in which we do the partial differentiations doesn’t matter.
In symbols,

DxDyf(x, y) =

(

∂2f

∂x∂y

)

=

(

∂2f

∂y∂x

)

= DyDxf(x, y),

(6.13)
where we show both notations for the second derivatives. In
other words the operators Dx and Dy commute: DxDy =
DyDx.

It came out like that in the Example following equation
(6.6), but we didn’t try to prove it. Now we can, because by
changing the order in which we let x → x+h and y → y+k,
we’d arrive at

f(x + h, y + k) = f(x, y)

+hfx(x, y) + kfy(x, y)

+1
2 [h2fxx(x, y) + 2hkfxy(x, y) + k2fyy(x, y)],

instead of (6.12). The alternative results must be identical,
giving the value of z at the same point (x+h, y+k); but the
two expressions for f(x + h, y + k) differ only in the mixed
second derivative, which is fyx(x, y) in (6.12) but fxy(x, y)
in the new expression. This proves the equality in (6.13).

A second consequence concerns the existence of a well-behaved
function z = f(x, y), which can be described by means of a
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surface on which every pair of values x, y defines a unique
point at height z. For such a surface we have noted that, to
first order in the infinitesimal changes dx(= h),dy(= k),

dz =

(

∂f

∂x

)

dx +

(

∂f

∂y

)

dy. (6.14)

The sum of the two terms on the right is called the total

differential of z = f(x, y). But suppose we are told that
the change in some quantity is related to dx,dy by

∆ = M(x, y)dx + N(x, y)dy,

where only the coefficients of dx and dy are given as func-
tions of x and y. How can we tell whether ∆ is the total
differential of some unique well-behaved function of the vari-
ables x, y?

There is a simple test; because if ∆ = dz it must be given
by (6.14) and therefore

M(x, y) =

(

∂f

∂x

)

, N(x, y) =

(

∂f

∂y

)

.

This requires, in view of (6.13), that

(

∂M

∂y

)

=

(

∂N

∂x

)

, (6.15)

each side of the equation being equal to the mixed second
derivative

(

∂2f

∂x∂y

)

.
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When these conditions are satisfied, Mdx + Ndy is said to
be an exact differenial and can be equated to the total
differential (6.14) of some well behaved function z = f(x, y).

What all this means, in terms of the hill-climbing picture
Fig.23, is that you can go from point A, at height z = f(x, y),
to any other point on the surface and it doesn’t matter what
route you take. You could go a short distance North, then a
long way East, and so on. But it is the total distance gone
in each direction that determines the height you reach at
the end: z is a unique and single-valued function of x and
y. This would not be the case if there was a cliff between
two possible routes: you could arrive at two different points,
with exactly the same values of x and y, one at the top of
the cliff and the other at the bottom! In that case z would
not be single-valued, smooth and continuous.

In Physics and Chemistry there are hundreds of examples
in which some measurable quantity depends on two or more
others (x, y, ... ) and the total change in the quantity de-
pends on the route you take in changing the independent
variables. To make life easier we usually try to find quan-
tities that depend only on the final values of the variables.
These ‘path-independent’ functions are specially important.
To find them we’ll need the results of this Section.
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6.2 Differential equations

We’ve already met several kinds of differential equation,
in which there is a relationship between a function y = f(x)
and its derivatives f ′(x) = dy/dx, f ′′(x) = d2y/dx2, etc.;
and to solve the equation you have to find the form of the
function that satisfies the given relationship. There’s not
enough room in one chapter of a short book to say much
about differential equations so we’ll have to be content with
a few simple examples.

First-order equations

In Chapter 2, the velocity v of a freely falling body was a
solution of the differential equation

dv

dt
= a (a = acceleration due to gravity).

Here the acceleration a is a constant, usually denoted by g.
It is the rate of increase of v with time t, and the solution of
the equation is v = v0+at, where v0 is another constant. You
can check this by doing the differentiation, finding dv/dt =
a. And you can see what the constant v0 means by putting
t = 0 in your solution, which then gives v = v0 at time t = 0
(i.e. the time at which you let go, taken as ‘zero’).

The differential equation here is a first-order equation be-
cause it contains only a first derivative; and the general

solution contains one constant (v0). A particular solution
follows if you choose this constant so as to satisfy a bound-

ary condition, which is here v = v0 – at the ‘boundary’ of
the time variable (t = 0 at the start of the motion).
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Another first order equation we’ve met is the one that defines
the exponential function. If y = ex, then

dy

dx
= ex = y.

This function describes the growth of a population (Section
1.4 of Chapter 1) when the variables x and y are replaced by
n (number of generations, which measures the time) and N
(number of people at time t). In equation (1.9) the solution
is given as

N = N0 exp(cn)

and if you differentiate this with respect to n you find

dN

dn
= cN0 exp(cn) = cN.

This seems a bit more difficult. dN/dn = cN doesn’t give
the derivative in terms of the independent variable n, so with
the usual notation it would read dy/dx = cy. But it’s still
a first-order equation and the general solution contains one
constant, N0, which you need to fix by using the boundary
condition: at the start, taking n = 0, the number of people
will be N = N0e

0 = N0, so you’ve fixed the constant to get
the correct particular solution. [I know you need at least 2,
but out of millions that’s something you can forget about!]
The other constant c is something you are given, like the
g in the first example, it’s part of the problem – not the
solution.

Second-order equations
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A second-order differential equation is one that contains
up to second derivatives. Its general form is

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = r(x), (6.16)

where p(x), q(x), r(x) are given functions of the independent
variable x and y = f(x) is the general solution required. If
the function r(x) on the right is zero the equation is called
homogeneous, but if it is non-zero the equation becomes
inhomogeneous and the solutions are of a different kind.
In this introduction we’ll keep to the simplest type where
r(x) = 0 and the coefficients p(x), q(x), and r(x) are con-

stants. We’ll be looking at examples of the equation

d2y

dx2
+ a

dy

dx
+ by = c, (6.17)

which is a linear equation with constant coefficients.
The simplest possible equation of this kind is d2y/dx2 =
constant, which we met in equation (2.2) and put in words
at the beginning of this Section: the velocity of a freely
falling body increases at a constant rate. We’ll take this as
our first Example, putting in a bit more detail.

Example 1. Free fall – and parachutes

In calculus language, dv/dt = g (the acceleration due to
gravity); and since v = ds/dt, where s is the distance fallen
at time t, the basic equation becomes

d2s

dt2
= g. (6.18)
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In equation (2.4) of Chapter 2, we found a solution, s = f(t),
by a graphical method: on putting it in our present notation
it reads s = 1

2gt2. To make sure this function does satisfy
(6.18) we just differentiate it twice, getting first ds/dt =
1
2g × 2t = gt, and then d2s/dt2 = g. But this can’t be the
general solution, because a second-degree equation should
have a solution with two arbitrary constants – and here we
don’t even have one.

To get the general solution we only need remember that
every time we differentiate we lose any constant term; so
when we differentiated ds/dt (= v) we could have added a
constant (call it v0 as it has the dimensions of velocity –
‘distance over time’) and the constant would disappear in
the differentiation. We could replace v by v + v0 and the
result would still satisfy the same differential equation. The
same is true for the distance fallen, s, if we change s to s+s0.
So the general solution seems to be

s = s0 + v0t + 1
2gt2 (6.19)

and it’s easy to check that this also satisfies (6.18). The con-
stants clearly correspond to particular boundary conditions

at t = 0. If we take t = 0 as the instant when we let the body
fall, then s = s0 is the distance at the start of the fall (wher-
ever we measure it from). And since v = ds/dt = v0 + gt it
is clear that v = v0 when t = 0 – it is the ‘initial’ velocity. If
we let the object fall from rest, at the position s0 = 0, then
s = 1

2gt2 is the particular solution of (6.18) corresponding
to these boundary conditions.

But is (6.18) really correct? – because the so lution tells

155



us that the speed of any freely falling body will go on in-
creasing forever, becoming as big as you please if you wait
long enough. That isn’t what really happens, so the equa-
tion we’ve used can’t be exactly right. In fact it’s only an
approximation, because it leaves out anything that opposes

gravity by acting so as to reduce the downward speed. In-
stead of (6.18) we should really be using

d2s

dt2
=

dv

dt
= g − kv, (6.20)

where the constant k depends on what the body is falling

through. The new term, −kv, is proportional to the velocity
(it is doubled if you double v), and it has a negative sign
because it acts against gravity, trying to reduce the rate of
fall. For a body falling through the air, k is so small it
is usually neglected. But it is still there, as you’ll know if
you’ve ever jumped into a river from a high bridge: as you
go down faster and faster you can feel the air rushing past
as it tries to slow you down – but k is not big enough and
you hit the water with a great splash! If instead you jump
from a ‘plane’, or a helicopter, you’d better take a parachute
with you: it fills with air, like an umbrella in the wind, and
slows your fall until you hit the ground at only a low speed.
It gives you a much bigger value of k. And now you can see
why that is important and why we want to solve (6.20).

To get a solution let’s go first for the velocity, turning the
equation round so it becomes

1

g − kv

dv

dt
= 1. (6.21)
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If you’re very smart you will be able to see that this connects
with what you learnt in Section 4.3: you can integrate the
equation, with respect to time,by writing

∫

1

g − kv

dv

dt
dt = t, (6.22)

and then recognising the left-hand side as

∫

dv

g − kv
= −1

k
log(g − kv).

(Remember the standard integral given in (4.24) and put
((g − kv) = u) Another way of solving (6.21) is to turn
it round by using (4.24): in that case it becomes dt/dv =
1/(g − kv) and integration gives

t =

∫

dv

(g − kv)
=

∫

1

u

dv

du
du = −1

k
log u

– exactly as before.

On putting this result in (6.21) we get t = −(1/k)log u, or
(since integration always brings in an arbitrary constant, C
say)

t = −(1/k) log(g − kv) + C.

The constant is fixed by the boundary conditions: at t = 0
we suppose the body falls from rest (v = v0 = 0). So C =
(1/k) log g; and at any later time t it follows that

kt = log g − log(g − kv) = log

(

g

g − kv

)

,
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since log A − log B = log(A/B).

The final result looks clearer in exponential form (check it!):

(k/g)v = 1 − e−kt. (6.23)

This satisfies the boundary conditions, for when t = 0 it
gives v = v0 = 0 (starting fom rest), and it predicts a ter-

minal velocity

vT = g/k, (6.24)

when t becomes indefinitely large. This is what you need
to know if you’re designing parachutes: how big must the
constant k be to guarantee a safe landing? You can also
calculate how far you will fall in reaching any given speed,
by integrating the velocity, v (= ds/dt), given in (6.23).
Think about it!

Example 2. The simple pendulum

Near the beginning of Book 1 we talked about measuring
things, in particular time. You’ve all seen pendulum clocks,
where a heavy body on a string, or stick, swings from side
to side. Each double-swing of the ‘bob’ (forward and then
backward) marks out a ‘unit of time’ and if we want to
know how long something takes we just count the number of

swings between starting and finishing: that’s what the clock
does in giving you t as a number of units.

The swinging pendulum is an oscillator and the time taken
for one complete oscillation is called its period. To make it
swing you have to displace the bob, by pulling it a distance,
y say, from its equilibrium position where it’s at rest:
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then you let go and the pendulum oscillates. The motion
is described by a second-order differential equation of the
form (note that the independent variable is t and that the
displacement y depends on t):

d2y

dt2
= −ω2y, (6.25)

where ω (‘omega’ is the letter we often use in talking about
oscillations) is a constant and the minus sign means that
the side-to-side velocity of the bob (namely dy/dt) is always
directed towards the equilibrium position where y = 0. We’ll
be looking for the general solution of this equation, but first
look at the results earlier in this chapter to see if we have
any functions that might give us ‘ready-made’ solutions.

Table 1 in Section 4.1 collects some key results. There you
find that if y = sin x then dy/dx = cos x; and if y = cos x
then dy/dx = − sinx. These results are easily extended to
y = sin ax, y = cos ax. Thus, changing the variable by
putting ax = u and using the rule (2.22), we get

d

dx
sin ax =

d

du
sin u × du

dx
= cos u × a = a cos ax,

with a similar result when y = cos ax. Together,

d

dx
sin ax = a cos ax,

d

dx
cos ax = −a sin ax. (6.26)

Now do the two differentiations one after the other, to get

d2

dx2
sin ax =

d

dx
(a cos ax) = a(−a sin ax).
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That means that if you differentiate the function y = sin ax
twice with respect to the variable x you get back the origi-

nal function, multiplied by −a2! And it’s the same for the
function y = cos ax:

d2

dx2
sin ax = −a2 sin ax,

d2

dx2
cos ax = −a2 cos ax.

In the differential equation we want to solve, namely (6.25),
the independent variable was called t (not x) and the dis-
placement y was a function of t. With this notation, the last
two equations become

d2y

dt2
=

d2

dt2
sin at = −a2 sin at,

d2y

dt2
=

d2

dt2
cos at = −a2 cos at (6.27)

and give us two solutions of (6.25)! If we put a = ω the
solutions are thus

y1 = sin ωt, y2 = cos ωt. (6.28)

But we were looking for a general solution, with two ar-
bitrary constants – where are they? It’s clear that either
solution in (6.28) can be multiplied by a constant, A or B
say, and will still be a solution. To see this it’s enough to
write the original equation in the form

Ly = D
2y + ω2y = 0, (6.29)
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where L = D
2 + ω2 is a linear operator, and if y is any

solution then so is Ay. Still more generally, if y1 and y2 are
any two solutions then so is y = Ay1 + By2; for

Ly = L(Ay1 + By2) = A(Ly1) + B(Ly2) = A × 0 + B × 0.

And now we have the general solution:

y = A sin ωt + B cos ωt. (6.30)

Remember that the sine and cosine functions, defined by
series in (1.6), have the form shown in Fig.6: when the ar-
gument of the function, ωt, increases by 2π the value of the
function starts repeating, the cycle of all distinct values has
been completed. The period T is thus defined by ωT = 2π,
while the frequency ‘nu’ of the oscillation – the number of
complete oscillations per unit time – is ν = 1/T : thus

T =
2π

ω
, ν =

1

T
=

ω

2π
. (6.31)

Example 3. Making music

Many musical instruments depend on the vibrations of a
tightly stretched string, which is either ‘plucked’ (by pulling
it to one side and then letting go) or ‘rubbed’ (by stroking
it with a ‘bow’). The shape of the vibrating string may be,
for example, as in Fig.25:
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Figure 25

Let’s think about a string of length L, stretched between its
two ends: if you pluck it and wait for it to ‘settle down’ it
will vibrate and make a musical sound.

Here the ends of the string are fixed at x = 0 and x = L
and the displacement y = f(x) is greatly magnified. But
what about the time t? In fact we’re not going to have an
ordinary differential equation this time, but a partial differ-
ential equation; because the displacement y at any point x
on the string will depend also on t as the string vibrates up
and down. We’ll need an equation to determine y = f(x, t),
which is a function of two variables.

The equation you need looks very simple. The displacement
y, at any point x, varies with time according to (using ∂
instead of d as there are two variables, x, y, as well as t)

∂2y

∂t2
=

1

c2

∂2y

∂t2
. (6.32)

Here c2 is a positive constant (that’s why we’ve written it
as a square), which depends on how tightly you stretch the
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string and on how heavy it is. The tighter the string, the
faster it vibrates; but the heavier it is, the slower it moves.
These things will become clear in Book 4, but for now we
only want to get a solution to (6.32) which is a “second-order
partial differential equation in two variables”.

Fig.25 suggests that, even when it moves, the string may
have a certain ‘shape’ y = y(x) at any instant of time. Can
we find particular solutions, in which the string keeps its
shape but simply moves up and down? – the displacement
at any point getting bigger and smaller as t changes. To see
if this is possible let’s try for a solution of the form

y(x, t) = F (x)T (t). (6.33)

This is an example of ‘separation of the variables’, which
is often useful in solving partial differential equations even
when it doesn’t usually lead to a general solution.

Now put (6.33) in (6.32) and see what happens. We’ll then
have to find the two functions, F (x) and T (t), such that

(

d2F

dx2

)

T (t) =
1

c2
F (x)

(

d2T

dt2

)

, (6.34)

where we’ve written ordinary derivatives instead of partial
derivatives when we’re differentiating functions of only one

variable, like F (x) and T (t).

This doesn/t look any simpler. But now divide both sides
of the equation by F (x)T (t) and you get

1

F

(

d2F

dx2

)

=
1

c2T

(

d2T

dt2

)

, (6.35)
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where everything on the left side depends only on x and
everything on the right depends only on t – for all values of
both variables! How can that be possible? If the two sides
were equal at one moment we could come back a bit later
and only the right-hand side would have changed – so how
could the two sides still be equal?

Equation (6.35) could still hold good only if both sides were
equal to the same thing, a separation constant C, not
depending in any way on either x or t. So now we have
“separated the variables” and have one equation to deter-
mine F (x) and an independent equation to determine T (t).

The equation for T (t) is

1

T

(

d2T

dt2

)

= Cc2,

where the separation constant appears on the right. This
last equation has exactly the same form as (6.25) if we put
Cc2 = −ω2; so we already know the solution for the time-
factor T : it is given in (6.30) as

T (t) = A sin ωt + B cos ωt. (6.36)

We needn’t keep both terms, however, because they’re really
the same function, wiggling up and down as you change t by
moving along the time axis. One wiggle is shown in Fig.25,
starting at y = 0 when t = 0 (plotting t-values horizontally,
in place of x-values, and if we measure time from that point
then the sine term is enough: the cosine term looks the
same, but pushed on along the t-axis so that it gives y = B
at t = 0 – which we don’t want.
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The expression on the left in (6.34), put equal to the same
separation constant C, gives the equation to determine F (x):
it is

1

F

(

d2F

dx2

)

= C = −(ω/c)2

and again the solution will in general be a combination of
the two terms sin(ω/c)x and cos(ω/c)x. In this case also,
the general solution is not required, because y = 0 at the two
ends of the string where x = 0 and x = L: the cosine term
doesn’t fit, since cos 0 = 1, so the solution must be of the
form F (x) = sin(ω/c)x. And this must be zero when x =
L. These boundary conditions are very important: the sine
function can be zero only for values of its argument ((ω/c)x)
which are integer multiples of π. So the only acceptable
functions F (x) must have ωL/c = nπ where n is an integer.
Thus the function F (x), which determines the ‘shape’ of the
vibrating string, must be of the form F (x) = A sin

(

nπ
L

)

x.
And if we attach the time factor, the first term in (6.36),
then the particular solution we need will be

y(x, t) = A sin(ω/c)x sin ωt = A sin
(nπ

L

)

x sin
(nπ

L

)

ct.

(6.37)
Here A is an arbitrary constant called the amplitude of
the vibration: and since the sine function takes only values
lying between +1 and −1 the displacement of any point on
the string must always be between ±A.

This solution tells us all we need to know about the vibrating
string. The period and frequency of the vibration follow as
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in (6.31), on substituting ω = (nπc/L) it follows that

T =
2L

nc
, ν =

nc

2L
. (6.38)

Notice especially that there is one solution for every integer
value n = 1, 2, 3, ... and that these alternative solutions arise
as a result of the boundary conditions, y = 0 at the two ends
of the string (x = 0, x = L) where it is fixed. The vibration
indicated in Fig.25 corresponds to n = 2 and in general n
indicates the number of ‘half-waves’ that can be fitted onto
the string. The ‘mode of vibration’ for any given value of
n is called the “nth normal mode”. The one for n = 1 is
called the “fundamental”, while the ones for higher values
of n are the “overtones”. If you pluck a string near the
middle, the musical sound you get corresponds mainly to
the fundamental, while if you pluck it away from the middle
you’ll get a mixture of overtones. The frequency (or ‘pitch’)
of the sound can also be changed by stretching the string
tighter or using a heavier one, thus changing the value of
c. All these things are important in the design of musical
instruments.

6.3 Eigenfunctions – and how we

can use them

Example 3 in the last Section brought in a very important
new idea, opening up a whole new field of mathematics. A
differential equation which contains a ‘parameter’ (like the
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separation constant C or the related constant ω), that has
solutions only for certain special values of the parameter,
is called an eigenvalue equation. The ‘allowed’ values of
the parameter are called eigenvalues and the corresponding
solutions, like (6.37) for example, are the eigenfunctions.

In earlier Sections we’ve used two methods of ‘fitting’ a given
function, y = F (x) say, by supposing it can be represented
approximately by a power series

F (x) ≈= f(x) = a0 + a1x + a2x
2 + ... (6.39)

and choosing the numerical values of the coefficients by some
suitable rule. This worked well in Section 4.5, where we took
just three points and chose the coefficients in the polynomial
y = A + Bx + cx2 so that it would reproduce the ‘true’ val-
ues of the function y = 1/(1 + x2) at those points – failing
a little bit at other points. In the second method, we used
Taylor’s theorem to get the coefficients in (6.39) in terms
of the derivatives, (dy/dx), (d2y/dx2), etc of the given func-
tion, all evaluated at a single reference point x = 0. Thus,
we found a0 = y0 = F (0), a1 = (dy/dx)0 = F ′(0), a2 =
1
2(d2y/dx2)0 = 1

2F ′′(0), and so on. This method gives all

the coefficients in the power series f(x) and can represent
F (x) exactly if we take an infinite number of terms. But
we have to be able to get all the derivatives of F (x) and
calculate their values for x = 0 – which can be a lot of work!
If you stop at, say, three terms, you’ll find that f(x) can be
a good approximation for small values of x but gets worse
and worse as x increases.

Now we’re going to use a third method, which doesn’t focus
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on a finite number of points or on one point only. Instead we
try to represent the given function as a linear combination
of eigenfunctions (all defined of course in the range of x
values in which we are interested) coming from some suitable
differential equation. Let’s take as an example the function
F (x) shown in Fig.26 by the heavy line – a nasty-looking
function with a constant value y = 1 for x in the interval
(0,0.5), but then dropping vertically to y = 0 and staying
there until x reaches the upper boundary x = 1. It’s a
function defined in the interval (0,1), with a discontinuity
at x = 0.5, and we’ll try to represent it as a combination
of the eigenfunctions φn(x) = A sin(nπx), n = 1, 2, 3, ...
which determine the normal modes of a vibrating string of
length L = 1. This looks impossible – but we’ll try!

If we take only the first N eigenfunctions, we’ll get an N -
term approximation to F (x):

FN (x) = c1φ1(x) + c2φ2(x) + ... + cNφN (x) (6.40)

and our job will be to choose the coefficients so as to get a
best approximation to F (x).

Generally, the curves we get on plotting F (x) and FN (x)
will differ, as indicated in Fig.26 for the 1-term approxima-
tion where we’ve taken c1 = 1. The first approximation
is then F1(x) = φ1(x). It differs from F (x) by ∆(x) =
F (x) − FN (x) at all points in the range, sometimes by a
positive amount (shown by the up-arrow) and sometimes
by a negative amount (down-arrow). So it’s no good adding
these differences for all points on the curve (which will mean
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integrating ∆(x)) to get a measure of how poor the approxi-
mation is; for cancellations could lead to zero even when the
curves were very different. It’s really the magnitude of ∆(x)
that matters, or its square – which is always positive.

x = 0 x = 1

∆

y-axis
F (x)

F (x)∆

F1(x)

x = 0 x = 1

y-axis
FN (x) (N = 50)

FN (x)

Figure 26 Figure 27

So instead let’s measure the difference by |F (x) − FN (x)|2,
at any point, and the ‘total difference’ by

D =

∫

∆(x)2dx =

∫

|F (x) − FN (x)|2dx. (6.41)

The integral gives the sum of the areas of all the strips of
height ∆2 and width dx. This quantity will measure the
error when the whole curve is approximated by FN (x) and
we’ll only get a really good fit, over the whole range of x,
when D is close to zero.

The coefficients cn should be chosen to give D its lowest pos-
sible value and we already know how to do that: in Chapter
2, Exercise 9, for a function of one variable, we found a
minimum value by first looking for a ‘turning point’ where
(df/dx) = 0; and then checked that it really was a min-
imum, by verifying that (d2f/dx2) was positive. It’s just
the same here, except that we look at the variables one at
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a time, keeping the others constant. Remember too that it’s
the coefficients cn that we’re going to vary, not x.

Now when you put (6.40) into (6.41) it looks like you’ll get
a big mess: but if you keep your head and write it all down
there’s nothing that you can’t do!

You first get (dropping the usual variable x where it’s not
needed)

D =

∫

|F − FN |2dx =

∫

F 2dx +

∫

F 2
Ndx − 2

∫

FFNdx.

(6.42)
So there are three terms to differentiate – only the last two
really, because the first doesn’t contain any cn and so will
disappear when you start differentiating. These two terms
are very easy to deal with if we make use of the special
properties of eigenfunctions. You don’t need to prove these:
we’ll just write them down for the ones we are using.

The eigenfunctions for the vibrating string are solutions of
the differential equation (6.35), which is

d2F

dx2
= −ω2F.

They have the simple form F (x) = A sin(nπx) for a string
of unit length (L = 1) and it is convenient to choose the
constant A as

√
2, as we’ll see in a moment. The first few

eigenfunctions are thus

φ1(x) =
√

2 sin(πx), φ2(x) =
√

2 sin(2πx),

φ3(x) =
√

2 sin(3πx), φ4(x) =
√

2 sin(4πx), ....(6.43)
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and we’re using them for x in the interval (0,1). The special
properties we need are very simple:
∫ 1

0
φn(x)2dx = 1,

∫ 1

0
φm(x)φn(x)dx = 0 for m 6= n.

(6.44)
Every function is said to be normalized to unity (as in
the first equation); and any two different functions are said
to be orthogonal (the second equation). The factor

√
2 in

(6.43) was chosen to normalize the functions. (Check that
it does so by evaluating the integral!)

Knowing these two properties, we can go back to (6.42) and
differentiate the last two terms, with respect to each cn (one
at a time, holding the others fixed: the first of the tw2o
terms leads to

∂

∂cn

∫ 1

0
F 2

Ndx =
∂

∂cn
c2
n

∫ 1

0
φn(x)2dx; = 2cn

while the second one gives

−2
∂

∂cn

∫ 1

0
FFNdx =

−2
∂

∂cn
cn

∫ 1

0
F (x)φn(x)dx = −2cn〈F |φn〉,

where a special notation has been used for the integral
∫ 1
0 F (x)φn(x)dx,

which is called the scalar product of the two functions
F (x) and φn(x). Thus

〈F |φn〉 =

∫ 1

0
F (x)φn(x)dx. (6.45)
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We can now do the differentiation of the difference function
D in (6.42). The result is

∂D

∂cn
= −2cn − 2cn〈F |φn〉

and this tells us immediately how to choose the coefficients
in the N -term approximation (6.39) so as to get the best
possible fit to the given function F (x):

cn = 〈F |φn〉 (for all n). (6.46)

So it’s really very simple: you just have to evaluate one
integral to get any coefficient you want. And once you’ve
got it, there’s never any need to change it in getting a better
approximation. You can make the expansion as long as you
like by adding more terms, but the coefficients of the ones
you’ve already done are final.

The one-term approximation F (x) ≈ F1(x) is clearly very
poor, as you can see from Fig.26. It gives a rounded peak
in the middle of the range, instead of the square step on the
left-hand side and y close to zero in the range x = 0.5 to
x = 1. But in a two-term approximation F2(x) = c1φ1(x) +
c2φ2(x) you will add on some of the function φ2(x) shown
in Fig.25: this will build up the function in the left-hand
half of the interval (0,1) but reduce it in the right-hand
half. If you go on adding more terms, always with the right
coefficients, given in (6.46), you’ll get closer and closer to the
given function F (x). Figure 27 shows (roughly) the kind of
fit you get with fifty terms. Notice that there is still a small
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wiggle in the ranges where F (x) is flat; and that where the
slope is discontinuous, the function jumping vertically at
x = 0 and x = 0.5, the difference ∆(x) is bigger, making a
‘spike’ in the approximation. But in the end, with very many
terms, any spikes become so narrow as to be in many ways
unimportant. This kind of approximation introduces the
idea of convergence in the mean, the difference between
the function and its ‘approximant’ tending to zero over most
of the given range, but still allowing finite differences at
certain points.

Eigenfunction expansions are very important in Physics and
the property of finality holds for all such expansions, not
only for those where the eigenfunctions describe the vibra-
tion of a string and satisfy the simple differential equation
(6.28). The same approach holds for eigenfunctions in one
or many variables and can be used as an easy and practical
way of getting into quite difficult theory.

In this book you’ve taken great strides into mathematics;
and that must be, for the moment, our final step!

Exercises

1) Find the partial derivatives,

∂f

∂x
,

∂f

∂y
,

of the functions (a) z = f(x, y) = x3 + 4x2y + 2xy2 + 3y3

(b) z = f(x, y) =
√

x2 + 3y2
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(Hint : Write this as u1/2 where u = x2 + 3y2 and use the
‘chain rule’ (2.22) for both derivatives, holding the second
variable constant.) (c) z = f(x, y) = y sin(x2 + y2)
(Hint : This is of the form y×u(x, y): use the rule (2.21) for
the product and (2.22) for the second factor, holding x or y
constant.)

2) From the first derivatives found in Exercise 1(a), differ-
entiate again to find the second partial derivatives

∂2z

∂x2
,

∂2z

∂y2
,

∂2z

∂x∂y
,

∂2z

∂y∂x
.

Note the equality of the two ‘mixed’ second derivatives.

3) Do the same as in the last Exercise, but starting from
the first derivatives of the function in (c) of Exercise 1, and
confirm that the mixed second derivatives are again equal.

4) Look at the function z =
√

x2 + y2, which gives the
height z of a point on a 2-dimensional surface, as a func-
tion of horizontal distances measured from the origin (x =
y = 0) in the x- and y-directions. (These are the x- and
y-coordinates of the point, as you’ll remember from Book
2.)

Make a sketch to show the form of this particular surface,
along with a ‘contour map’, in which each contour is labelled
by its height z.

Get an expression for the total differential dz, in terms of
small displacements dx,dy from the origin.

5) Use the first few terms of the Taylor expansion in (6.12) to
find how the height of a point on the surface z = f(x2 + y2)
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changes as you go from the point P with coordinates x, y to
a point Q with coordinates x + h, y + k.

Make some numerical tests, starting from the point x =
1, y = 2 to see how accurately you can approximate ∆z =
f(x + h, y + k) − f(x, y) (the real change of height) by the
differential dz, evaluated using for example h = k = 0.1.

6) Suppose you are told that, by taking infinitesimal steps
dx,dy in the x- and y-directions, the height z of a point on
some surface will change by M(x, y)dx + N(x, y)dy, with
M(x, y) = (x2 − y2), N(x, y) = xy. Is this possible, in
general, for any ‘well-behaved’ surface?

(Hint : For this to be true, you could make any sequence
of steps, using this recipe, and always reach the same end
point at some height z = f(x, y), depending only on the
final values of x, y. But the test (6.15) will show you this is
simply not possible.)

7) Repeat Exercise 6, but assuming that M(x, y) = 2x +
y, N(x, y) = x+2y. You will find that the test is satisfied.
Find the equation of the surface, z = f(x, y) and say what
this result means.

8) In the text we found a solution of the differential equation
for free fall of an object, taking account of the resistence

of whatever it was falling through (e.g. air, water). The
result (6.23) contains a constant k: what are its physical
dimensions?

Try putting in some numerical values of k (in what units?),
to get corresponding values of the terminal velocity (6.24).
Choose a value and then calculate the velocity reached after
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1,2, and 5 seconds of free fall. Suppose the fall starts 100
m above the ground. Integrate the velocity equation to find
the distance fallen at time t. What will your speed be when
you hit the ground?

(Hint : If you’ve forgotten about ‘dimensions’ look back Sec-
tion 2.1, where you’ll also find the approximate value of the
‘acceleration (a) due to gravity’ – usually denoted by g.)

9) Work through Section 6.3 carefully to make sure you un-
derstand every step. Then show that, when the expansion
coefficients cn in (6.40) are determined using (6.45), the ‘dif-
ference function’ D in (6.42) takes the form D = 1−∑N

1 c2
n.

Can you say what this result means? Calculate the values
of D1 and D2 for the 1- and 2-term approximations to the
given function (shown shaded in Figs. 26 and 27).

(Hint : Do you remember that the sum of squares of the
components of a vector (Section 6.1 of Book 2) gives the
square of its length? Here the sum as N → ∞ tends to 1:
but what about the sum for only 1, 2,... or 50 terms?)

10) Now try to find a similar approximation to the function
F (x) = x, which starts at F (0) = 0 and rises to F (1) = 1.
Sketch the results for 1-, 2- and 3-term approximations and
get corresponding values of D, which indicates the error in
each approximation.

(Hint : Turn back to Chapter 4 for the integrals you’ll need.)
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Looking back –

In Book 3, you’ve learnt how mathematics can be used in
describing relationships between the quantities you may
want to measure – how the distance you travel (s, say) may
depend on the time you take (t, say) and how you can put
this in mathematical language by writing s = f(t). You say
this in words as “s is a function of t” where the f is just
a name for the rule which tells how to get the value of s for
any given value of t.

• Chapter 1. There are three main ways of describ-
ing a relationship y = f(x): (i) by making a table

showing values you choose for the independent vari-

able x and the corresponding values of the depen-

dent variable y; (ii) by ‘plotting’ the pairs of values
(x1, y1), (x2, y2), ... to get a graph of the relationship;
or (iii) by using ‘standard’ mathematical functions,
such as y = xn, y = sinx, y = ex, and so on. Here
you’ve learnt about the simplest standard functions
and know what their graphs look like.

• In Chapter 2 you’ve met all the main ideas of the
calculus: differentiating to find how fast y = f(x)
changes when you change x; and integrating to find
the area under the curve y = f(x) between limits at
x1 and x2; and you know what all this means and
how it can be used. The result of differentiating y =
f(x), written dy/dx = f ′(x), is the derivative, of the
function and is a new function of x.
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• In Chapter 3, you found the derivatives of a number
of standard functions and were then able to differenti-
ate anything that you could express in terms of them,
as sums or products and so on.

• Chapter 4 looked at the problem of integrating any
given function, which is more difficult because there’s
no simple rule and you have to look for special ‘tricks’.
But integration is so useful that you need to be able
to do it, even when you can’t find the right tricks. In
that case, we found numerical methods, which require
only a table of values of x, y and give you what you
need, using simple arithmetic.

• In Chapter 5, we came back to power series. in
which a given function is represented in the form y =
f(x) = a0 + a1x + a2x

2 + ... . Taylor’s theorem

shows us how to choose the coefficients.

• Finally, in Chapter 6, we took a first look at some
things not usually done before university. You won’t
need them yet, but when you do they’ll seem like ‘old
friends’ – no harder than what you’ve done already.
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