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BASIC BOOKS IN SCIENCE

About this Series

All human progress depends on education: to get it
we need books and schools. Science Education is of key
importance.

Unfortunately, books and schools are not always easy to
find. But nowadays all the world’s knowledge should be
freely available to everyone – through the Internet that
connects all the world’s computers.

The aim of the Series is to bring basic knowledge in
all areas of science within the reach of everyone. Every
Book will cover in some depth a clearly defined area,
starting from the very beginning and leading up to uni-
versity level, and will be available on the Internet at no

cost to the reader. To obtain a copy it should be enough
to make a single visit to any library or public office with
a personal computer and a telephone line. Each book
will serve as one of the ‘building blocks’ out of which Sci-
ence is built; and together they will form a ‘give-away’
science library.
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About this book

This book, like the others in the Series, is written in
simple English – the language most widely used in sci-
ence and technology. It builds on the foundations laid
in Book 1 (Number and symbols), Book 2 (Space) and
Book 3 (Relationships, change – and Mathematical Anal-
ysis). Book 4 starts from our first ideas about the world
around us: when we push things they usually move and
the way they move depends on how ‘heavy’ or ‘massive’
they are.

From these simple ideas about mass and motion, and
a few experiments that anyone can do, we can lay the
foundations of Physics: they are expressed mathemat-
ically in the ‘laws of motion’, which form the starting
point for the Physical Sciences. Almost all of Physics
and its applications, up to the end of the 19th century,
can be understood using only the laws of motion! The
rest involves Electricity (to be studied in Book 10) and
takes us into Modern Physics and all that has happened
during the last 150 years. So you’re starting on a very
long journey of discovery ....
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Looking ahead –

Now you know something about numbers and symbols
(Book 1) and about space and geometry (Book 2); and
you’ve learnt (in Book 3) how to use these ideas to study
relationships between measurable quantities (how one
thing depends on amother). So at last you’re ready to
start on Physics.

Physics is a big subject and you’ll need more than one
book; but even with only Book 4 you’ll begin to under-
stand a lot about a large part of the world – the physical

world of the objects around us. Again, there are many
important ‘milestones’....

• Chapter 1 deals with actions like pushing and
pulling, which you can feel with your body: they
are forces, which can act on an object to make it
move, or to change the way it is moving. But every
object has a mass, which measures how much it
resists change. By the end of the chapter, you’ll
know about force, mass, weight and gravity; and
the famous laws put forward by Newton. You’ll
know that forces are vectors (which you first met
in Book 1) and how they can be combined.

• In Chapter 2 you’ll think about lifting things:
you do work and get tired – you lose energy.
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Where has the energy gone? You find two kinds
of energy: potential energy, which you can store

in an object; and kinetic energy, which is due to
its motion. The sum of the two is constant: this
is the principle of energy conservation.

• Chapter 3 extends this principle to the motion of
a particle (a ‘point mass’) when it is acted on by
a force and moves along and curved path. Energy
is still conserved. You learn how to calculate the
path; and find that what’s good for a small particle
seems to be good also for big ones (e.g. the Earth
going around the Sun).

• Chapter 4 asks why this can be so and finds a
reason: think of a big body as a collection of mil-
lions of particles, all interacting with each other,
and use Newton’s laws. One point in the body,
the centre of mass, moves as if all the mass were
concentrated at that point and acted on by a sin-

gle force – the vector sum of all the actual forces
applied to the big body. You’ll also learn about
momentum and collisions.

• Time to think about rotational motion. Chap-
ter 5 shows how to deal with rotation of a many-
particle system about its centre of mass. Corre-
sponding to “Force = rate of change of (linear)
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momentum”, there is a new law “Torque = rate
of change of angular momentum”. You’ll learn
how torque and angular momentum are defined;
and how the new law applies just as well to both
one-particle and many-particle systems. So you
can study the Solar System in more detail and
calculate the orbits of the planets.

• In Chapter 6 you’ll be thinking of a rigid body,
in which all the particles are joined together so
that the distances between them can’t change. If
the body is moving you are studying Dynamics;
but if it is in equilibrium (at rest or in uniform

motion), then you are studying Statics. You’ll be
able to solve many every-day problems and you’ll
be well prepared for entering the Engineering Sci-
ences.

• Chapter 7 deals with simple machines, illustrat-
ing the principles from earlier Chapters, going from
levers to water-wheels and clocks.

• The final Chapter 8 carries you to the present
day and to the big problems of the future; we all
depend on energy – for machines and factories, for
transporting goods (and people), for digging and
building, for almost everything we do. Most of
that energy comes from burning fuel (wood, coal,
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oil, gas, or anything that will burn); but what will
happen when we’ve used it all? We probably need
to solve that problem before the end of this cen-
tury: how can we do it? Do we go back to water-
mills and wind-mills, or to the energy we can get
from the heat of the sun? In this last chapter
you’ll find that mass is a form of energy and
that in theory a bottle of seawater, for example,
could give enough energy to run a big city for a
week! – if only we could get the energy out! This
is the promise of nuclear energy. Some countries
are using it already; but it can be dangerous and it
brings new problems. To understand them you’ll
have to go beyond Book 4. In Book 5 you’ll take
the first steps into Chemistry, learning something
about atoms and molecules and what everything
is made of – and inside the atom you’ll find the
nucleus!

Notes to the Reader. When Chapters have several
Sections they are numbered so that “Section 2.3” will
mean “Chapter 2, Section 3”. Similarly, “equation (2.3)”
will mean “Chapter 2, equation 3”. Important ‘key’
words are printed in boldface, when they first appear.
They are collected in the Index at the end of the book,
along with page numbers for finding them.
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Chapter 1

Mass, force, and
weight

1.1 What makes things move?

When you take hold of something (we’ll usually call it
an ‘object’ or a ‘body’) and pull it, towards you, or push

it, away from you, it usually moves – unless it’s fixed or
too big.

In both cases you ‘apply a force’ to the object. Push
and pull are both forces, which can be big or small (de-
pending on how strong you are and on how ‘hard’ you
push or pull). So a force has a magnitude (size) and a
direction: it is a vector (see Book 1, Section 3.2) and
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is often represented by an arrow, pointing one way or
another (away from you if you are pushing, towards you
if you are pulling); and the length of the arrow is used
to show the magnitude of the force it represents (long
for a big force, short for a small one).

When you apply a force to a body it will also have a
‘point of application’, usually you – where you take hold
of the body – and this can be shown by putting the end
of the arrow (not the sharp end!) at that point.

We’re now all set to go. Fig.1 represents the force you
might apply to a cart full of stones to make it move away
from you – in the direction of the arrow. The bold dot
marks the point of application.

At first the cart is standing still; it is ‘at rest’ or ‘sta-
tionary’. But then, as you keep on pushing. it begins to
move – very slowly at first, but then faster and faster,
until it seems to be going by itself! Even when you
stop pushing it keeps on going – until something stops
it (perhaps the ground is rough and a wheel gets stuck
in a hole).

Another example could be a barge (a flat-bottomed boat
for carrying heavy loads), usually pulled (or ‘towed’) by
a horse or other strong animal, walking along the ‘tow
path’ at the side of the river or canal (Fig.2). Starting
from rest, the barge moves very slowly at first, even
when the horse is pulling as hard as it can. But then
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it goes faster and faster, even when the animal is just
walking and seems to be pulling hardly at all – the barge
is moving almost by itself.

cartq kq

Figure 1

barge q

Figure 2

- -

This second example brings in another idea. The ‘pulling’
force in Fig.2 is applied at the dot (•) by means of a
rope, connecting the animal to the barge, and the rope
is stretched tight. We say that there is a tension in the
rope and that this tension carries or ‘transmits’ the pull
from one end of the rope (the animal) to the other end
(the barge). The tension is just a special kind of force
but it has the important property of being able to carry
force from one point to another.

� �i

c c-q T -q T1� q

T2
-q T

Figure 3

If you cut the rope at any point (P, say) you can keep
everything just as it was by holding the two cut ends
together (if you’re strong enough!) as in Fig.3. To do
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that you have to pull the left-hand piece of rope with a
force T1 (equal to T , the one at first applied by the horse)
and the right-hand piece with a force T2 just as big as T1

but pointing in the opposite direction. The forces must
be equal, because otherwise you’d be pulled off your feet!
The forces you are applying are now T1 = T (you’re now
standing in for the horse!) and T2 = −T1 = −T , where
the minus sign just shows the direction of the force (let’s
agree that negative means to the left, positive to the
right).

Of course the animal is still there, pulling with the same
force T on the far end of the right-hand rope, so we show
it as the last force vector on the right.

The force applied to the barge (T1) is called the action,
while the equal but opposite force T2, is called the re-
action of the barge against whatever is pulling it.

Since the point P could be anywhere in the rope, it is
clear that the tension must be the same at all points
in the rope and that it can be represented by a pair of
arrows in opposite directions ← • →. The equal and
opposite forces at any point are what keeps the rope
tight; and the tension is simply the magnitude of either
force.

We can talk about a ‘pushing’ force in a similar way. But
you can’t transmit a push with a length of rope or string;
it just folds up! You need something stiff, like a stick.
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When you push something with a stick you can describe
it using a diagram similar to the one in Fig.3 except
that the directions of all the forces are reversed. Just
imagine cutting a little piece out of the stick at point P
(you can do it in your head – you don’t need a saw!).
Then you have the two halves of the stick, separated by
the bit you’re thinking of taking away (this takes your
place in Fig.3, where you were holding the two pieces of
rope together). If you’re pushing something on your left
(perhaps trying to stop the barge that was still moving)
then the forces in the stick can be pictured as in Fig.4a
(magnified so you can see what’s going on): the first
bit of stick is pushing the barge with a force −F (i.e.
F in the negative direction – to the left) and so feels
a reaction +F ; each piece of stick pushes the next one
with a force F and is pushed back by a force −F .

stick rope-q �q �q -q

(a) compression (b) tension

Figure 4

Whenever there is a pair of equal but opposite pushes at
any point in the stick we say it is in compression; and
it is now the compression that transmits the force from
one end of the stick to the other. Notice that in Fig.4(a)
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we’ve shown the forces acting on the piece of stick : they
are applied to the ‘faces’ (i.e. the cut ends) of the piece
and point into it. To be clear about the difference be-
tween compression and tension, look at Fig.4(b) – which
shows a little piece of the rope (Fig.3) when it’s in ten-
sion: the forces acting on this piece of rope are applied
at its cut ends and point out of it. When you were
standing in for that missing piece of rope (Fig.3) these
were the forces you could actually feel, as if they were
trying to pull you over: they were the reactions to the
forces you were applying to the barge (on the left) and
the horse (on the right).

Tension and compression are two very important ideas,
that we’ll use a lot.

We now want to bring all these ideas, taken from every-
day life, together and to express them in a few simple
principles or ‘laws’ – the laws first proposed by Newton
in his ‘Principia’, a book published in 1686.

1.2 How can we measure a force?

In Physics we need to measure all the things we talk
about. To measure force we start by looking for a law,
in the form of an equation, to express what we’ve found
from everyday experience. Force, let’s use the letter F
to stand for its magnitude, is what makes a body move;
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but it does not move as soon as the force is applied –
you have to wait until it starts to move, slowly at first
and then faster and faster. So force, applied to a body
at rest (not fixed but free to move), will lead to an in-

crease in its speed from zero to some value v, where v is
the magnitude of the velocity (another vector quantity
like the force itself). Since v increases as time passes,
provided we go on applying the force, we can say v is
a ‘function of the time t’ (see Book 3 Chapter 1) and
write v = v(t). The rate at which v increases (how much
extra speed the body gains in every second) is called the
acceleration of the body, usually denoted by a, and a
will also be a function of time: a = a(t). Notice, how-
ever, that even when the magnitude v of the velocity
vector v is not increasing the vector may be changing
direction, so more correctly acceleration means the rate
of change of the vector v. (If you swing something round
your head, on the end of a string, its speed may be con-
stant but the velocity is continually changing direction.
The vector v is constant only if it keeps always the same
direction; but you can feel the tension in the string –
and that is what pulls it to one side and makes it go in
a circle instead.)

Everything we do seems to tell us that “the bigger the
force applied to a body, the bigger will be its acceler-
ation”: to double the acceleration of the cart, or the
barge, we need to double the force applied (e.g. by hav-

7



ing two people, instead of one, doing the pushing or the
pulling). But the result will also depend on the object
being pushed or pulled: a cart full of stones needs a
much harder push than one that’s empty!

We can now put all we know about moving things into
one very simple equation. In words it will say

The force F needed to make an object move
with an acceleration a, is proportional to
the value of a. The proportionality constant
is called the mass (m) of the object.

or in symbols

F ∝ a or F = ma. (1.1)

More fully the quantity m is called the inertial mass,
being a measure of the ‘inertia’ or slowness of the object
to change its state of motion when acted on by a force.

Equation (1.1) is usually called ‘Newton’s second law of
motion’. It really includes the law he stated first – that
any body continues in its state of rest, or uniform mo-
tion in a straight line, unless acted on by some ‘external
agency’ (i.e. a force). To see why this is so, we take
away the force by putting F = 0; from (1.1) this means
the acceleration (a) must be zero; and this means the
velocity of the body (v) is a constant – which includes
the special case (v = 0) when the body is at rest. So
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a body may be going very fast, even when no force is
applied to it! And we’ve seen examples of this with the
cart and the barge – when you stop pushing or pulling,
the thing still keeps on going ‘by itself’, until something
stops it. Notice again that ‘uniform motion’ must be in
a straight line, because velocity is really a vector and if
the motion is in a curve then the direction of the vector
v is changing; in other words, the acceleration will not

be zero! Notice also that v (in special type), is used from
now on to indicate the velocity vector, which is not the
same as its magnitude v (shown in ordinary italic type).

We’ve already discovered Newton’s third law of motion
when we were thinking about tension and compression
in the last Section: when two forces act at the same
point they must be equal in magnitude but opposite in
direction – “action and reaction are equal but opposite”.
Newton’s great idea, however, was much more general
than that: he realized that action and reaction together
make up the interaction between two things. When-
ever A acts on B with a force F (the ‘action’), B acts on
A with a force −F (the ‘reaction’): if A and B interact
in any way whatever, then one feels a force F and the
other feels a force −F – and it doesn’t matter which one
we call the action and which we call the reaction. In
other words, there is no such thing as a single force!

To Newton’s first and second laws, combined in equation
(1.1), we must add a third:
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Newton’s third law is often expressed in words as

To every action there is an
equal and opposite reaction.

With Newton’s three laws we are almost ready to do
marvellous things. But not quite – because we still
don’t know how to measure the force and the mass! So
how can we actually use equation (1.1)? To answer this
question we need to know something about gravity, a
word coming from the Latin gravis, meaning ‘heavy’.
(Like many of the great philosophers of the time, New-
ton wrote in Latin and when he needed a new word
that’s where he took it from.)

When we let go of an object it falls to the ground, even
if we aren’t applying any force to it; and it falls with
a certain constant acceleration of a = 0.981m s−2, as
was noted in Section 1.1 of Book 3. So there must be
a force acting on it, even if we aren’t even touching it.
Where does that mysterious force come from? It is called
the ‘force due to gravity’ and it arises because any two
masses attract each other even when they aren’t con-
nected in any visible way. This doesn’t really explain

what gravity is; and even Einstein’s theory of ‘general
relativity’ doesn’t tell the whole story. But the general
idea is simple: any massive body, like the Earth itself,
has a small effect on the space around it; it ‘bends’ the
space very slightly and this bending shows itself as a
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field of force, which is ‘felt’ by any other mass which en-
ters the field. This has been mentioned already, in the
last Chapter of Book 2; but hundreds of years before
Einstein, Newton had already proposed, on the basis
of observation, what turned out to be the correct (very
nearly) law of universal gravitation – ‘universal’ because
it seemed possible that it was true for all the stars and
planets in the Universe! And the law is again surpris-
ingly simple: in words it says that there is a force of
attraction F between any two masses m and M , pro-
portional to the product of the masses and inversely

proportional to the square of the distance, R say, be-
tween them. Written as an equation this law becomes

F = G
mM

R2
, (1.2)

where G, the ‘constant of gravitation’ is a proportional-
ity constant which can only be found by experiment.

The force F in (1.2) is our first example of an interaction
between two bodies that doesn’t depend on their being
in contact, or being connected by strings or held apart by
sticks. And yet Newton’s third law applies: if the force
on mass m, produced by mass M , is represented by the
vector F pointing from m towards M , then the force
on M , produced by m, is represented by the vector −F

pointing in the opposite direction. It may seem strange
that an apple falls to the ground (i.e. towards the centre
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of the Earth) as soon as we let it go, while the Earth
doesn’t seem to move towards the apple – when both
feel the same force of attraction. But that’s because the
mass of the Earth is many millions of times that of the
apple, so according to (1.1) its acceleration towards the
apple would be almost zero – even if we consider only
the apple and the Earth and not all the other ‘small’
things (from birds to battleships!) that feel the Earth’s
gravitational pull and all attract each other in different
directions.

We still don’t know how to measure force and mass! So
where do we go from here?

1.3 Force, mass, and weight

The ‘laws’ represented in equations (1.1) and (1.2) are
not really laws at all. They should be called hypothe-
ses – proposals, based on everyday experience and guess-
work but not proved: they can’t be accepted as laws un-
til they’ve been thoroughly tested and found to be true.
But we’re doing Physics, and that’s the way it goes: we
look around us and experiment, we measure things and
guess how they may be related, and then we make pro-
posals which can be tried and tested; if they don’t work
we throw them away and start again; but if they do then
we accept them and go ahead, taking them as the ‘laws
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of Physics’.

Now that we have a few laws, we can come back to the
problem of how to measure forces and masses. Let’s
use the letter g for the ‘acceleration due to gravity’
(g = 0.981m s−2), the rate at which the speed of a freely
falling body increases – nearly 1 metre a second in every
second! The most remarkable thing about g is that it
really is a constant : it’s the same for all bodies, peb-
bles or plastic, people or paper, as long as they’re really
free to fall. You might feel sure that heavier things fall
faster, thinking of stones and feathers, but really things
falling through the air are not quite free - the air slows
them down a bit and this ‘bit’ is very important for
a feather, which just floats slowly to the ground, but
not for a heavy stone that just pushes the air out of
its way. If we take away the air (doing the experiment
in a big glass jar, after sucking out all the air with a
pump) we find that everything does fall just as fast: g
has the same value for all falling bodies. It was the Ital-
ian, Galileo Galilei (1564 -1642), who first found this
was so and became one of the first people in history
to use the ‘scientific method’ – observing, measuring,
proposing a law, and testing it. Before that, people just
followed what other people had said. And the famous
Greek philosopher Aristotle (384-322 BC) had said that
heavier things fell faster, so everyone believed him, for
nearly 2000 years, just because he was so famous!
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Why is all this so important? If we have two masses (m1

and m2) and let them fall, in the gravitational field of
the Earth, the second law tells us that the forces acting
on the two masses must be F1 = m1g and F2 = m2g,
respectively. We call the force F = mg associated with
any mass m its weight. So if m = 1 kg is the standard

mass unit, the ‘kilogram’, kept in Paris (see Section 1.1
of Book 1), then w = mg will be 1 ‘kilogram weight ’ or,
for short, 1 kg wt. Mass and weight are two different
things: weight is the force that acts on a mass, because
of the gravitational field. And if you take your kilo-
gram to the Moon it will not weigh as much because the
Moon’s gravitational field is less strong, M in equation
(1.2) being much smaller for the Moon than M for the
Earth. Perhaps you’ve seen pictures of astronauts on
the Moon jumping to great heights because they don’t
weigh as much; and this shows that g is much smaller
for bodies on the Moon.

All the same, we live on the Earth and the easiest way
for us to compare and measure masses is through their
weights. This is possible, as we can now see, because
the ratio of two masses is just the same as the ratio of
their weights:

w2

w1

=
m2g

m1g
=

m2

m1

(1.3)

– the gs cancelling. So the use of a weighing machine
in Book 1 as a way of measuring masses (i.e. compar-
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ing any mass m with a given unit mass) gives the right
answer, wherever you do the experiment – even on the
Moon, where g is not the same as it is here – provided
you use the weighing machine to compare the mass with
a standard mass and don’t just use the marks on a scale.
(Can you say why? - remembering that the ‘spring bal-
ance’ in Book 1 works by stretching a spring.)

Now we have a fairly complete system of units (for mea-
suring masses, lengths, and times, and all quantities de-
pending only on M,L,T) as long as we don’t meet electric
charges. The units of length and time are the metre (m)
and the second (s), respectively. The unit of mass is the
kilogram (kg). The unit of force is called the Newton
(N): it is defined as the force which will give unit mass
(1 kg) an acceleration of 1 m s−2. In other words,

1 N = (1 kg)×(1 m s−2) = 1 kg m s−2,

which means [force] = MLT−2 – “force has the dimen-
sions MLT−2”. Since the force acting on a body of mass
m is mg, and is the weight of the body, we can say

1 kg wt = 1 kg×(9.81 m s−2 = 9.81 kg m s−2 = 9.81 N.

To convert a force of x kg wt into Newtons we just have
to multiply by 9.81, obtaining 9.81x N.
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1.4 Combining forces

In Section 1 we noted that forces were vectors and that
when two forces act at a point (e.g. any point in a
stretched rope or string) they must be equal and oppo-
site (equal in magnitude but opposite in direction): they
are called action and reaction; and the object on which
they act (e.g. a little bit of string at point P) doesn’t
move because the combined action of the forces is zero –
they are ‘in balance’ and have a ‘resultant’ which is the
same as no force at all.

qP qP� - -�

(a) (b)
Figure 5

Forces are combined, or added, using the law of vector
addition: you represent each force vector by an arrow
and put the arrows ‘head to tail’, without changing their

directions (i.e. by sliding them but not turning them).
An arrow pointing from the first ‘tail’ to the last ‘head’
will then represent the vector sum of the forces. We’ll
find that this is a general rule, however many forces there
may be, but for the moment let’s talk about just two.
Fig.5(a) shows two forces acting on something at point
P, while Fig.5(b) shows how they are combined to give a
resultant which is zero – represented by an arrow with
zero length (just a point). When there is no resultant
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force acting on a body it does not move and we say it is
in equilibrium.

(You may think all this can’t be true: if point P is on the
rope that’s pulling the barge it will be moving so how
can it be in equilibrium? But remember that Newton’s
first law talks about a ‘state of rest or uniform motion

in a straight line’ – so there’s really no contradiction.)

But what happens if more than two forces act at the
same point? They may even have different sizes or dif-
ferent directions, so how do we find their resultant?
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Figure 6

To have a real-life example, let’s suppose the forces F1, F2

and F3 are the tensions in three strings tied to a small
bead at point P. The tensions are produced by two
equal 2 kilogram weights (w1 = w2 = 2 kg wt), hang-
ing from strings as in Fig.6(a). The strings pass over
smooth nails, hammered into a vertical board, so the
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force F1 = w1 is transmitted to the bead – the tension
being the same at all points on the string – and so is
F2. The third force, F3 = w3, is the tension in the verti-
cal string that supports the weight w3. (Notice that the
nails are only needed, so as to change the vertical pull
of the weights w1, w2 into a sideways pull on the bead.)

The directions of the three forces are represented by the
by the thick arrows in Fig.6(a); and we suppose the bead
has come to rest at point P, which is then its equilibrium
position. This means that the resultant force on the
bead, the vector sum F1 + F2 + F3, should be zero.

To form the vector sum of F1, F2, F3 and show that it is
zero, we simply put their arrows head to tail (again by
sliding them around without changing their lengths and

directions, which means the vectors will not be changed
in any way). The result is shown in Fig.6(b): the vectors
now form a closed triangle and the fact that it is closed
(no distance between the first ‘tail’ and the last ‘head’)
means the vector sum is zero F1 +F2 +F3 = 0. But wait
a minute! We didn’t say how big the third weight was.
If we took w3 = 3 kg wt, for example, the sides would
not form a closed triangle, the vector sum would not be
zero, and the bead at P would not be in equilibrium.
In fact, we took w3 = 1.789 kg wt and this is the only
value that makes the triangle close exactly.

So what have we done? Since the angles at the corners
of a triangle, with sides of known lengths, are easy to
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calculate by simple geometry (see Book 2), we can actu-
ally calculate the angles between any three forces that
meet at a point and are in equilibrium. Once we know
how to work with vectors we don’t always have to do
experiments – we can do it all in advance, on paper!

1.5 How to work with vectors

To end this Chapter, let’s remember the rules for dealing
with vectors by introducing their components. When
we work in three-dimensional space (‘3-space’, for short),
rather than on a flat surface (a 2-space), we sometimes
have to do complicated geometry. This can often be
made easier by representing vectors in terms of their
components along three axes, the x-axis, the y-axis,
and the z-axis, as in Section 5.3 of Book 2. Usually,
the axes are chosen perpendicular to each other (or
orthogonal) and are defined by three unit vectors
e1, e2, e3 pointing along the three axes, each with unit
length. If you think of the vector v as an arrow, then its
components v1, v2, v3 along the three axes are the num-
bers of steps you have to take along the three directions
to express v in the form

v = v1e1 + v2e2 + v3e3, (1.4)

where v1e1, for example, is the vector v1 times as long
as e1 and the vectors are added using the usual ‘arrow
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rule’. The order of the terms in the sum doesn’t matter;
and to add two vectors a, b we simply add corresponding
components. So if c is the vector sum of a and b, then

c = a+b ↔ c1 = a1+b1, c2 = a2+b2, c3 = a3+b3

(1.5)
- the symbol ↔ simply meaning that the things it sep-
arates are exactly equivalent, the single vector equation
is equivalent to three ordinary equations among the nu-
merical components. Sometimes you can go a long way
with vector equations (for example, using F1+F2+F3 = 0

as a condition for three forces at a point to be in equi-
librium): but in the end you’ll need to get numbers (e.g.
the magnitudes of forces and the angles between them)
– and then you’ll go to the components.

To find the component of a vector along some given
axis, all you need do is think of it as an arrow starting
at the origin and drop a perpendicular from the tip of
the arrow onto the axis: the part of the axis that goes
from the origin to the foot of the perpendicular is the
projection of the arrow on the axis; and its length is
the value of the component. In Section 3.2 of Book 2
we noted three important quantities, all relating to the
angles in a triangle. If we call the angle θ (‘theta’),
then the sine, cosine, and tangent of the angle are (see
Fig.7(a))
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sin θ = BC/AC, cos θ = AB/AC, tan θ = BC/AB,

where AB, BC, AC are the lengths of the three sides.
Fig.7(b) shows how the components of the vector v in
(1.4) can be expressed in terms of the angles it makes
with two unit vectors in the same plane:

v1 = v cos θ, v2 = v sin θ, (1.6)

where v is the length of the vector (its magnitude or
‘modulus’).

Most of the time, we don’t need anything else – not even
Tables of sines and cosines for all angles – because we
know that in the right-angled triangle Fig.7(a) AC2 =
AB2 + BC2 (Book 2, Chapter1), so given any two sides
we can easily get the other side, and then all the ratios.

To see how it all works, let’s go back to the example
in Fig.6, but making it a bit more difficult: if all three
weights are different, the bead is pulled over to one side
– so how can we find the new ‘equilibrium position’?
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– and how will this depend on what weights we use?
Suppose we choose w1 = 2 kg wt, as in Fig.6, but aren’t
sure what w2 and w3 must be to keep the ‘lop-sided’
arrangement in Fig.8(a) in equilibrium. How can we
decide?
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To be in equilibrium, the resultant force acting on the
bead at P must be zero – for otherwise it would start
moving. So let’s resolve the vector sum F1 + F2 + F3

into horizontal and vertical components, as in Fig.7(b),
and take each one separately. The force F3 points verti-
cally downwards and has no horizontal component; but
F1 and F2 have horizontal components −F1 sin θ1 and
F2 sin θ2, respectively, where F1, F2 are the magnitudes
of the force vectors and θ1, θ2 are the angles shown in
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Fig.8(a). The horizontal component of the resultant
force in the positive (right-hand) direction is thus

−F1 sin θ1 + F2 sin θ2 = −w1 sin θ1 + w2 sin θ2

– the forces (tensions) in the left-hand and right-hand
strings being w1 and w2 in units of 1 kg wt. The angles
in Fig.7(a) give (think of the triangles with horizontal
and vertical sides each of length 1, for θ1, but of lengths
1 and 3 (respectively), for θ2)

sin θ1 = 1/
√

2, sin θ2 = 1/
√

10.

With w1 = 2 kg wt we can only prevent the bead moving
sideways by choosing w2 kg wt, so that 2×(1/

√
2) kg wt =

w2 × (1/
√

10). And if you solve this equation (see Book
1) you’ll find w2 = 4.472 kg wt.

For equilibrium we still have to choose w3 so that the
bead will not move up or down; and this means the total
force must also have zero component in the vertical di-
rection. The positive (upward) component of the forces
in the two strings will be

F1 cos θ1 + F2 cos θ2 =

2× (1/
√

2) kg wt + 4.472× (3/
√

10) kg wt,

where we’ve put in the value of w2 just found; and this
must exactly balance the negative (downward) compo-
nent due to weight w3 hanging from the vertical string.
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If you put in the numbers (do it yourself!) you’ll find
that w3 must have the value w3 = 5.657 kg wt.

The ‘triangle of forces’ is shown in Fig.8(b). Notice how
the sides, which represent the force vectors with a scale
1 cm to every kg, are parallel to the strings in Fig.8(a);
and that the triangle closes only when the third weight
is chosen so that the vector sum of the forces on the
bead s exactly zero. Instead of carefully drawing pic-
tures, and sliding the vectors around to form the trian-
gle, we’ve been able to do all the work using only simple
arithmetic. Remember (see Book 2) that the Greeks
couldn’t work this way because they never quite man-
aged to bring algebra and geometry together.

In the Exercises that follow, you’ll find many other ex-
amples of how to use equilibrium conditions; but they
are all solved in the same way – by first of all asking
what forces are acting at a point and then resolving
them into their components along two perpendicular di-
rections (for forces in two dimensions - a plane); or three
directions for forces in three dimensional space.

The science of forces in equilibrium is called Statics.
When the forces are not in equilibrium, and result in
movement of the bodies thay act on (usually non-uniform
motion), we are dealing with Dynamics. Statics and
Dynamics together are branches of the science of Me-
chanics. In the next Chapter we begin to think about
the way massive objects – from projectiles to planets –
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move under the influence of forces.

Exercises

1) Express the tensions in the strings (Figures 6 and
8), which keep the bead in equilibrium, in force units
(Newtons).

2) How much do you weigh, in Newtons? And what is
your mass? How much would you weigh if you were an
astronaut, standing on the moon (where the value of g
is about 1.70 m s−2)?

3) A bucket, hanging from a rope, is used to take water
from a well. When empty it weighs 1 kg wt; when full
it holds 9 litres of water and every litre has a mass of
about 1 kg. What force (in Newtons) is needed to raise
the full bucket? (The litre is a unit of volume: 1 litre
= 10−3 m3.)
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4) The bucket (in the last exercise) can be lifted by
passing the rope over a wheel, or ‘pulley”, as in Fig.9(b)
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below – so you can pull down, which is easier, instead of
up. Do you have to pull just as hard in (b) as in (a)?

5) Suppose you have to lift a heavy iron bar, weighing
150 kg, which is much too much for any normal person.
The last exercise shows you how it can be done, using
only a rope and some pulleys. You need eight pulleys,
a long rope, and two pieces of wood – and a few ‘bits
and pieces’ for fixing them together as in Fig.10. The
top piece of wood just supports four of the pulleys. The
other piece of wood carries the other four pulleys; and
has a hook and chain under it, for lifting things. Show
that, if you can pull with a force of 20 kg wt, then you
can lift up to 160 kg! Explain why.

6) A heavy truck is being pulled up a slope, as in Fig.11;
its total mass is 1000 kg and it has wheels so it can run
freely. The slope is ‘1 in 10’ (1 metre vertically for ev-
ery 10 metres horizontally). How hard must you pull on
the rope (i.e.what tension T must you apply) to keep
the truck from running downhill? (Hint: resolve the
forces acting into components along and perpendicular
to the slope, making things simpler by supposing the
forces all act at a point – the middle of the truck. Don’t
forget that, besides the weight and the tension in the
rope, the ground exerts an upward force R (the reac-

tion of the ground, taken perpendicular to the slope) to
support part of the weight W. You will also need the
sine and cosine of the angle of slope (θ, say): they are
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sin θ = 0.0995, cos θ = 0.9950. Can you calculate them
for yourself?)

W W W

R

T
R

T1

R
T2

Figure 11 Figure 12

6) Now suppose two trucks are being pulled up the same
slope, as in Figure 12. Both have the same weight; but
what about the tensions T1 and T2 in the two ropes –
can you calculate them? (Use the same method as in
Exercise 5, writing down the conditions for equilibrium
and solving the equations to get the values of T1 and
T2.)

If the load is too heavy, which rope will break first?

7) A string of unstretched length 2L0 = 3m is stretched
horizontally between two rigid walls, separated by a dis-
tance 2L1 of 4 m. When a weight mg is attached at
the middle, the string stretches further and ‘sags’ by an
amount ∆ at the midpoint.

Explain how you could calculate (i) the tension in the
string, before and after adding the load; and (ii) what
the value of mg must be to give an observed value ∆ =
10 cm.
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(The tension T in the string is related to the stretched
length (T ) by T = k(L−L0) and you are given the value
of the ‘force constant’ k as k = 5kgwtcm−1

(Other Exercises to follow)
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Chapter 2

Work and energy

2.1 What is work?

Now you know something about force, and how it can be
used to move things, we can start thinking about some
of the other quantities that are important in mechanics
– and the first of these is work. If you carry something
heavy upstairs, or raise a bucket full of water from the
well, you are doing work – and it makes you feel tired. In
both cases you are applying a force (F , say) to an object;
and you are moving it (a distance d, say, in the direction
of the force). The force you are applying is equal to the
weight of the object, mg, but in the opposite direction:
taking the positive direction upwards, it is F = mg (m
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being the mass of the object), while the weight has the
same magnitude mg but is downwards.

Let’s use W to stand for the work you’ve done (don’t
mix it up with weight !) and ask how it will depend on
F and d. Suppose we double the mass of the object,
then we double its weight mg (g being constant), which
is also the force F = mg needed to support it. And
doubling the weight means doubling the work you have
to do to raise the object through a distance d – carrying
two sacks of flour upstairs, instead of just one, makes
you feel twice as tired! In other words, the work done
(W ) is proportional to the force applied (F ).

In the same way, doubling the distance through which
you raise the object (going up two floors, instead of one)
means doubling the work you have to do: so the work
done (W ) is also proportional to the distance (d).

To summarize, we suppose that W is proportional to
the product of F and d: W ∝ F ×d. And we can choose
the unit of work (not yet fixed) so that

W = Fd. (2.1)

To be accurate, W is the work done when the force
acting, F , “moves its point of application a distance
d in the direction of the force”. The unit of work is now
defined, through (2.1) as the work done when F = 1
N and d = 1 m: it is 1 Nm, 1 Newton-metre. The
physical dimensions of work are thus [W]= MLT−2× L
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= ML2T−2. The “Newton-metre” is a big word for a
unit; and usually we call it by the shorter name, the
“Joule”, after James Joule (1818-1889), one of several
people thinking about such things at about the same
time.

The formula (2.1) is something we have guessed, through
thinking about our own experience with lifting weights,
but we’ll find that it also holds good very generally for
small massive objects moving under the influence of all
kinds of force. Remember, however, that the W defined
in (2.1) is the physics definition of work! You might
feel you’re working hard even just to hold a weight up
– without actually lifting it (which makes d = 0 and
W = 0). But in that case work is being done inside

your body ; your muscles are keeping themselves tight,
so you can support the weight, and they are using the
chemical energy that comes from ‘burning up’ your food.
In Physics we’re not usually talking about that kind of
work, which is very difficult to measure.

Suppose now you’ve lifted a heavy stone (1 kg wt, say)
to a great height (50 metres, say, above the ground).
The work you’ve done is given by (2.1) and is W =
mg × h = (1kg) × (9.81 m s−2) × (50 m) = 490.5 J –
which seems quite a lot. But where has all that work
gone? The stone doesn’t look any different; but you’ve
changed its position and it’s now in a position to give
you all that work back. When it’s able to do work we
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say it has energy; and this particular kind of energy,
which depends only on the position of the stone, is called
potential energy and is usually denoted by the symbol
V

How do we turn that energy back into work? We simply
let the stone fall back to the ground: it does work by
digging itself a hole in the ground or by breaking any-
thing that tries to stop it! There are many other ways
in which a falling weight can turn its potential energy
back into useful work: think of a clock, driven by hang-
ing weights – which you wind up at night, giving them
enough energy to drive the clock all through the next
day. We now want to find out about other forms of en-
ergy and how one form can be changed into another, or
into useful work.

2.2 Two kinds of energy

Suppose you have a mass m at height h above the ground
and you let it fall, from rest (i.e. not moving when you
let go). Its potential energy (often we use ‘PE’, for short)
is then V0 = mgh at the start of its fall. When it’s fallen
a distance s, however, its PE will be smaller, because its
height above the ground will then be h − s of instead
of h. So the loss of PE is mgs. Where has it gone?
The only thing the stone has got in return is motion –
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it started from rest and now, after time t say, it’s going
quite fast. We say the lost PE has been changed or
‘converted’ into kinetic energy (the Greek word for
motion being kinos).

Let’s now try to express this kinetic energy (KE for
short) in terms of things that have to do with motion.
The force acting on the stone, due to gravity, is constant
and produces an acceleration g: so in every second its
velocity will increase by 9.81 m s−1; and after time t it
will be gt. More generally, we can suppose that anything
moving with constant acceleration a will have a velocity
v1 = at1 at time t1 and will have gone a distance s1; and
at some later time t2 it will have a velocity v2 and will
have gone a distance s2. So we know the force acting,
F = ma, and the distance moved in the direction of the
force, s = s2 − s1. All we need now is a formula giving
s in terms of t; and this we already know from Book
3, Section 2.1, where we got the formula by a graphical
method. Fig.13 will remind you of how we did it.
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We used T for the upper limit of time and found that
the distance gone as t increases from t = 0 to t = T was
given by

s = 1
2
aT 2. (2.2)

This is represented by the area under the line v = at,
between the lower and upper boundaries at t = 0, T
– which is just half the area of a rectangle with sides
T (horizontally) and V = aT (vertically). The result
is exact in the limit where the strips, into which the
area is divided, become infinitely narrow: it is called the
“definite integral of the velocity, with respect to time,
between the limits 0 and T”.

What we really need is s2 − s1, the distance moved as
t goes from t1 to t2. This is represented instead by the
shaded area in Fig.14 – which is that of a rectangle (of
width t2−t1 and height v1), with a triangle (of the same
width, but vertical height v2 − v1) sitting on top of it.
The sum of the two areas thus gives us

s2 − s1 = (t2 − t1)v1 + 1
2
(t2 − t1)(v2 − v1)

= (t2 − t1)[v1 + 1
2
(v2 − v1)]

= 1
2
(t2 − t1)(v2 + v1). (2.3)

Now we can get the work W done by the constant force
F during the time t2 − t1. The force is related to the
acceleration by F = ma, and since a is the slope of the
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straight line giving velocity against time we can say

F = ma = m× v2 − v1

t2 − t1
. (2.4)

Thus W = (Force)×(distance) is the product of (2.4)
and (2.3):

W = m× v2 − v1

t2 − t1
× 1

2
(v2 + v1)(t2 − t1)

= 1
2
m× (v2 − v1)(v2 + v1)

= 1
2
mv2

2 − 1
2
mv2

1

– in which the only variables left are mass and veloc-
ity! As the time increases from t1 to t2, the velocity
increases from v1 to v2, and the quantity 1

2
mv2 increases

from 1
2
mv2

1 to 1
2
mv2

2. This quantity gives us the pre-
cise definition of what we have been calling the kinetic
energy:

The kinetic energy of a point mass (m), moving with
velocity v is

Kinetic energy K = 1
2
mv2 (2.5)

We’ve now solved the mystery of where the potential
energy went! In summary,

Work done by gravity on a falling point mass

= loss of potential energy (V1 − V2)

= gain in kinetic energy (K2 −K1).
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So if we use E to stand for the total energy K + V , we
can say

E1 = K1 + V1 = K2 + V2 = E2 (2.6)

– the total energy E does not change as we go from
time t1, at the beginning of the motion, to t2, at the end
of the motion. We say the total energy is ‘conserved’
throughout the motion (t1 and t2 being arbitrary times
at which we make the observations). This result, which
we’ve found only in one special case (for two kinds of
energy and for motion under a constant force) is an ex-
ample of one of the great and universal principles of
Physics, that of the Conservation of Energy, which
we study in more detail in later Sections.

Remember, all this is for a small ‘point’ mass – like the
falling pebble – which we usually call a ‘particle’. You
can think of a big object as being made up from many
small ones: it can then have an extra kinetic energy,
coming from its rotational motion – but we’ll come to
that in Chapter 6. Until then we’re going to talk only
about the motion of single particles; or of things that
can be treated approximately as just ‘big particles’ (not
asking how? or why? until much later).

Remember also that this is the way science works: you
go in small steps, using the simplest ‘model’ you can
imagine, as long as it includes the things (like mass,
velocity, force) that seem to be important. Models in
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the mind can easily be thrown away if they don’t work!
You don’t have to make them and then break them up.

2.3 Conservation of energy

A system such as a falling particle, in which the energy
is constant – as in (2.6) – is an example of a conser-
vative system; no energy is going in or out and the
energy it has is conserved. With this simple idea we can
describe many kinds of particle motion, even without
making calculations. All we need do is draw a graph to
show how the potential energy of the particle (V ) de-
pends on its position (x, say, if it is moving along the
x-axis).

Suppose, for example, you throw a stone vertically up-
wards with a velocity v. Its potential energy, if we use x
to mean distance above the ground, will be V (x) = mgx.
So plotting V against x will give a straight line of slope
mg, as in Fig.15 which shows a “potential energy dia-
gram”. A horizontal line has been added, at height E
in the diagram, to represent the constant total energy.
What can this tell us about the motion?
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At the start, E = K1 + V1 is entirely KE, the energy
of motion you have given to the stone. V1 = V (x1)
(the PE) is zero when x1 = 0. At any later time, when
the stone is slowing down and has risen to height x2,
we can say K2 + V2 = E. So the new KE will be K2 =
E−V (x2) – and this is represented by the distance from
the PE curve up to the horizontal line at energy E. Now
the important thing to notice is that K must always be
positive, being proportional to the square of the velocity;
when x = x2 is the point where the E-line crosses the
PE curve the KE has fallen to zero and the stone stops,
for an instant. The value of x2 is then the maximum
height of the stone; it can go no higher for that value of
E. After that point, the value of x can only get smaller:
going back down the curve you again reach the point
x = x1 = 0 and the stone hits the ground again – with
all the KE you gave it at the start.
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Another example is shown in Fig.16, where the PE curve
describes the motion of a pendulum - a small weight on
the end of a string, which can swing backwards and for-
wards. Here x = 0 describes the position of the weight
when it is hanging vertically, in equilibrium, and non-
zero values of x will correspond to displacement of the
particle when you push it away from the vertical. When
you push it you have to do work and the amount of
work done gives you V = V (x), the PE function. As
in the first example, the increase in PE as x changes
from x = x1 = 0 to x = x2 gives you the energy stored,
V2 = V (x2); and, if you then let go,

K1 + V (x1) = K2 + V (x2) = E, (2.7)

will describe how the balance of energies (between ki-
netic and potential) can change. If you release the par-
ticle from rest at x = x1 = X, the KE will be zero and
E = V (X) will fix the constant total energy. At all
other points the KE will be K = E − V (x), represented
as in the Figure: it can never go negative and so the
motion is bounded at x = X and x = −X, the ends
of the swing at which K becomes zero and the motion
reverses.

Notice that in both examples we are getting a lot of
information about the motion without actually solving
(or ‘integrating’) Newton’s equation (1.1) – but that’s
really because we’ve done it already in finding the en-
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ergy conservation equation (2.6)! You’ll understand this
better in the next Section, where we begin to use what
we know about calculus.

First, however, remember that the conservation equa-
tion was found only for one particular kind of force,
the force due to gravity, which is constant; and that in
this case the potential energy is a function of position,
V = V (x), as indicated in (2.7). Forces of this kind
are specially important: they are called conservative
forces and they can always be derived from a potential
function. We look at more general examples in Chapter
3.

2.4 Doing without the pictures –

by using calculus

Our starting point for studying the motion of a particle
was Newton’s second law (1.1): F = ma, where F is
the force acting on the particle, m is its mass, and a
is the rate at which its velocity increases (in the same
direction as the force). If you’ve read some of Book 3,
you’ll remember that the rate of change of velocity v
with respect to time t (which defines the acceleration,
a) can be written as

a =
dv

dt
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and is the limiting value of a ratio δv/δt – where δv is a
very small change of v, arising in the small time change
δt.

Now the mass is just a constant factor, multiplying a,
so Newton’s law can also be stated as

F = m
dv

dt
=

d(mv)

dt
=

dp

dt
, (2.8)

where p = mv, the mass of the particle times its velocity,
used to be called the “quantity of motion” in the particle
when it moves with velocity v: nowadays it’s usually
called the momentum of the particle, or more fully
the linear momentum since it’s ‘in a line’. The usual
symbol for it is p, but others are sometimes used (so
watch out!).

Although we’ve been talking mainly about force, the
rate of change of p, the momentum itself is also an im-
portant quantity. You’ll understand this when we talk
about collisions in which something massive and mov-
ing fast is suddenly stopped: if you’re going fast and
run into a stone wall it’s your momentum that does the
damage!

Newton’s law in the form (2.8) is a differential equa-
tion: it determines the momentum p as a function of
time (t), provided we know F as a function of time.
And we know from Book 3 Chapter 2 that if we’re told
the rate of change of something then we can find the
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‘something’ by integration. When dp/dt = F (t) we
say

p =

∫

F (t)dt, (2.9)

where
∫

...dt means “integrate with respect to t” to get
p as a function of time. If the force is applied at time t1
and continues to act until t2 we can also find the change

of momentum, ∆p = p2 − p1, as the ‘definite’ integral

∆p = p2 − p1 =

∫ t2

t1

F (t)dt, (2.10)

between the ‘limits’ t = t1 (the ‘lower’ limit) and t = t2
(the ‘upper’ limit). So (2.9) gives you a function of time,
p = p(t), whose derivative is F (t) – for whatever value
t may have; while (2.10) gives you a single quantity ∆p
– the difference of p-values at the end (p2 = p(t2)) and
at the beginning (p1 = p(t1)) of the time interval.

Where does all this get us if we don’t know the force F
as a function of time – how can we do the integration?
Well, in general, we can’t! But so far we were always
talking about motion under a constant force; and in
that very special case we could do the integration, for
F = ma, a being the constant acceleration. In that case

p =

∫

(ma)dt = mat = mv,

where v = at is the velocity at time t of the particle
moving with acceleration a.
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Let’s do something less easy. At some time, everyone
plays a game with a bat (or heavy stick) and ball: you
hit the ball with the stick and see how far you can send
it. You hit the ball as hard as you can; but the ‘hit’
lasts only a very short time - a tiny fraction of a sec-
ond - and the rest of the time the ball is on its journey
through space, with only a much smaller force acting
on it (gravity, which in the end brings it down to the
ground). Imagine what happens at the time of the hit:
the stick strikes the ball with a great force, that knocks
it out of shape a bit and sends it on its way. As soon
as the ball moves it loses contact with the stick and the
force drops to zero. Now we ask how the force F = F (t)
must look, as a function of time, during that split sec-
ond when the bat and ball are in contact. Perhaps it
will be something like Fig.17:

-

6

t1 t2
t-axis

F-axis

Figure 17

-t-axis

6
F-axis

t1t2
t-axis

Figure 18

F will be zero (neglecting the small force due to gravity)
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except between times t1 and t2, say, when the bat meets
the ball and the ball leaves it. But during the time of
contact, perhaps only a thousandth of a second, it will
rise very suddenly to a very large value and then drop
very suddenly to almost nothing. In other words the
‘force curve’ will show a very sharp peak; and to make
things easy we could think of it as a rectangular ‘box’
of width ∆t and height Fav (the ‘average’ value of the
force). By using this simple ‘model’ of what’s going on,
with the approximate force curve shown in Fig.18, we
can get a good idea of how big the force must be.

Suppose the ball has a mass of 0.2 kg and you give it
a velocity of 10 ms−1, starting from rest. Then p2 in
(2.10) will have the value 0.2 × 10kgms−1, which will
also be the value of ∆p. With the model we’re using
(Fig.18), this change of momentum is produced in 10−3s.
And the definite integral in (2.10) is simply the area
under the curve of F (t) between limits t1 and t2, which
is the area of the ‘box’ and has the value (height×width)
Fav × 10−3s. So, according to (2.10),

Fav × 10−3 s = 0.2× 10 kg m s−1

and the average force acting on the ball before it leaves
the bat will be

Fav =

(

0.2× 10 kg m s−1

10−3s

)

= 0.2×104 kg m s−2 = 2000 N.
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That’s about 200 kg wt! – as if two very heavy men
were standing on the ball. And all you did was hit it
with a small piece of wood! A force of this kind, which
is very large but lasts only a very short time, is called
an ‘impulsive’ force, or just an impulse. This kind of
force produces a sudden change of momentum, which we
get by integrating F with respect to the time. But in
Section 2.2 we found that a force could also produce a
change of kinetic energy, obtained by integrating F with
respect to distance over which the force acts (i.e. moves
its point of application in the direction of F ).

To end this Section let’s look at the connection between
these two ideas. The change of KE is equal to the work
done when the particle is displaced through a distance
∆s = s2 − s1 in the direction of the force: it is the
definite integral

∆K = K2 −K1 =

∫ s2

s1

Fds, (2.11)

where the integrand (the part following the integral sign)
represents the work done in the infinitesimal displace-
ment ds. But the change of momentum is given in
(2.10), written out again here to show how similar the
two things look:

∆p = p2 − p1 =

∫ t2

t1

Fdt.

45



In (2.11), we think of F as a function of distance gone:
F = F (s); but the values of any one of the variables
s, t, v will determine a particular point on the path, so
we can equally well think of F as a function of t, or of v.
And in Book 3 we learnt how to ‘change the variable’,
obtaining the rate of change of a function y = f(x),
with respect to x, in terms of that for another variable
u = u(x): the rule for differentiating was (Chapter 2 of
Book 3)

dy

dx
=

dy

du

du

dx

and in Chapter 4 we applied this rule to integration (the
inverse process), where it took the form

∫

f(x)dx =

∫

f(v)
dv

dx
dx =

∫

f(v)dv (2.12)

– remembering that, in the integral, the name we give
the variable doesn’t matter.

Now in (2.11), even though we don’t know F as a func-
tion of s, we can easily introduce the velocity v as a new
variable: thus

F = ma = m
dv

dt
= m

dv

ds

ds

dt
= mv

dv

ds
.

This means the definite integral in (2.11) can be rewrit-
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ten as
∫ s2

s1

Fds =

∫ s2

s1

mv
dv

ds
ds

=

∫ v2

v1

mvdv = 1
2
m(v2)

2 − 1
2
m(v1)

2

= K2 −K1.

Of course, you’ll say, we knew this result already from
the graphical method we used in Section 2.2; but the
results we got were only for motion under a constant
force (giving constant acceleration), as in the case of a
freely falling body. But now we know how to handle the
general case, by using the calculus. If there is a force
(e.g. the resistance of the air), trying to slow the particle
down, we can still calculate what will happen – provided
we know how the force depends on the velocity – even
though the energy conservation equation may no longer
hold.

2.5 Other forms of energy

So far, we’ve come across two main kinds of energy:
potential energy (PE), which depends on position of a
particle in space and not on how fast it is moving; and
kinetic energy (KE), which depends only on its velocity.
There are other kinds, which may not even involve a
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particle, which we’ll meet in other Chapters. Here we’ll
introduce only one more kind of PE – the energy of a
stretched spring or piece of elastic, which we just call
a ‘system’. If we change such a system by bending it
or stretching it, then we do work on it and the work
done is stored as potential energy. When we let go, the
system returns to its normal condition and this energy
is released. It may turn into KE (the spring may jump
into the air) or, if it’s a clock spring, it may come out
slowly – turning wheels and pointers to show you the
time.

Usually, the system is in equilbrium before you do any
work on it; and this means that some ‘coordinate’ (like
the length of a spring before you stretch or compress it)
has an ‘equilibrium value’ which can be taken as x = 0.
And the force you have to apply will be proportional to
the amount of the displacement from x = 0: we write

F (x) = −k|x|, (2.13)

where F (x) is the force in the spring when the displace-
ment is x and k is called the “force constant”. The
modulus |x| (i.e. x without any ± sign) is used because
usually it’s only the amount of the displacement that
counts – not whether it’s in one direction or the other
(left or right, up or down). But the − sign before the k
means that if x is positive the force F (x) will be nega-

tive, towards x = 0, while if x is negative the force will
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be in the direction of the positive x-axis. In both cases
the force is a ‘restoring force’, trying to bring the system
back to its equilibrium condition with x = 0. The force
law (2.13) is known as “Hooke’s law” and the value of k
is a property of the system, to be found by experiment.

The energy stored in the spring, for any value of x, can
be obtained by integrating the force you have to apply
to stretch it. Thus, taking x positive, the force to be
applied will be opposite to that in the spring and will be
F = +kx, while the work done in increasing x to x+ δx
will be

δV = force in positive direction× δx = kxδx.

It follows that the potential energy corresponding to a
finite displacement x will be the definite integral

V (x) =

∫ x

0

kxdx = [1
2
kx2]x0 = 1

2
kx2. (2.14)

This function is symmetric about the point x = 0, taking
the same value when x changes sign, and is in fact the
parabola shown in Fig.16 which applies for a swinging
pendulum. The same form of PE function holds good
for many kinds of energy storage device.
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2.6 Rate of doing work: power

We started to talk about work and energy in Section
2.1 and have come quite a long way, finding important
general principles such as the conservation of the total
energy E = K+V for any system with only conservative
forces. The ‘work equation’ (2.1) expressed our everyday
experiences of carrying sacks of flour upstairs as a simple
formula, which led us on to everything that followed.
But now we need a new concept. The work you can
do is not the only important thing: sometimes how fast

you can do it is even more important. The rate of doing
work is called power; and the more sacks of flour you
can cary upstairs in a given time the more powerful you
are! The same is true for machines, of course: you can do
more work in the same time if you use a more powerful
machine.

All we have to do now is make the definition a bit more
precise and decide how to measure power – what will
be its units? Suppose that one or more forces act on
a system and do an amount of work W (calculated by
using (2.1) for each force acting) in a time interval t.
Then the ratio W/t will be the average rate of doing
work during that interval: it will be called the “aver-
age power” consumed by the system and denoted by P .
When W is measured in Joules and t in seconds, P will
be expressed in units of J s−1 (Joules per second). The
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dimensions of P will be [P ]=ML2T−2×T−1 = ML2T−3

and the unit of power will thus be 1 J s−1 or, in terms
of the primary units, 1 kg m2 s−3; this unit is called the
Watt (after James Watt, who invented) the steam en-
gine and 1 W = 1 J s−1. The Watt is quite a small unit
and the power of small engines in everyday use is very
often several thousand Watt, a few kW (kiloWatt).

In science we are usually interested in the instantaneous

power a machine can give us, not in the average over a
long period of time, and this is defined by going to the
limit where t becomes infinitesimal:

P = dW/dt. (2.15)

In the Exercises that follow you’ll find examples of how
all such concepts can be used.

Exercises

1) Look back at Fig.9(b) (end of Section 2.1) which
shows a bucket of water being raised from the well. Sup-
pose the bucket, with its water, has a mass of 10 kg and
that it has to be raised by 4 m. How much work (W )
has to be done? and what force is doing the work?

2) Now look at Fig.9(c), where the bucket seems to be
carried by two ropes (even though there’s really only
one). Why is the tension (T ) you have to apply to the
rope only half what it was in Exercise 1? Is the work
you have to do, to raise the bucket through 4 m, now
only half as much as it was? If not – why not?
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3) If you let the rope slip when the full bucket is at the
top, how much KE will it have when it hits the water?
and how fast will it be going?

4) Look at Fig.15 which is an energy diagram for a stone
thrown vertically upwards. Suppose the stone has mass
0.1 kg and is thrown up with a speed of 10 m s−2.

How much KE does the stone start with? And how high
will it rise before it stops and starts to fall? If you are
1.5 m tall and the stone hits your head on the way down
how much KE will it still have?

5) Fig.11 shows a truck being pulled up a slope. The
mass of the truck is 1000 kg. Calculate the reaction (R)
and the tension (T ) in the rope. How much work must
you do to pull the truck slowly up to the top, a distance
of 10 m? (and why do we say “slowly”?) Where does
this work go to?

If the rope snaps, at the top of the slope, what happens
to the truck and the forces acting on it? What speed
will it have when it reaches the bottom of the slope?

6) In Exercise 4 you calculated the KE (which will also
tell you the velocity v of the stone when it hits your
head. What will its momentum be? Now suppose the
time of contact is about 0.1 s (before you are knocked
out!) and use the same ‘model’ as in Fig.18 to estimate
the average ‘contact force’ during that short interval.
What is its value (i) in Newtons, (ii) in kg wt, and (iii)
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as a multiple of the weight of the stone when it’s not
moving.
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Chapter 3

Motion of a single
particle

A note to the reader

Some parts of this Chapter are difficult (including the first

Section); but don’t be put off – they are only showing how

what we know already, about work and energy and motion,

holds good very generally. You’ll find that many things start

coming together – ideas about space and geometry (from

Book 2) and about using the calculus (from Book 3) – and

that you can get a good idea of what is happening, even with-

out fully understanding all the details. Later in the Chapter

you’ll be surprised by how far you can go with nothing more

than simple arithmetic.
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3.1 What happens if the force on

a particle is variable and its

path is a curve?

So far we’ve nearly always been thinking of motion in
a straight line, resulting from a constant force. The
distance moved (x say) was a function of the time t,
x = x(t), and so was the velocity, v = v(t), while the
acceleration a was simply a constant. When we turn
to motion in “three-dimensional space” (‘3-space’ for
short) things are a bit more difficult because every point
in space needs three coordinates to describe its position;
and every velocity needs three components; and so on.
Book 3 has prepared the way for dealing with motion
in 3-space – the science of kinematics – but now we
want to deal with real particles (which have mass, and
are acted on by forces) and this takes us into physics.

We have already met scalar quantities (such as distance,
speed, kinetic energy, potential energy) which all have
magnitudes but do not depend on any particular direc-
tion in space; and also vector quantities, which besides
having a magnitude are also dependent on a direction.
The first vector we meet is the position vector of a
point in space (we’ll nearly always be talking about vec-
tors in 3-space, so the 3 will usually be dropped): it will
be the vector that points from the origin of a system
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of coordinates to the point with coordinates x, y, z and
can be expressed as (see Fig.19)

r = xe1 + ye2 + ze3 or r→ (x, y, z). (3.1)

x
e
1

y-axis

x-axis

z-axis

ye2

ze3

r
=

xe
1
+

ye
2
+

ze
3

y-axis

x-axis

z-axis
F

ds
θ

Figure 19 Figure 20

Note that a special type (e.g.r) is used for a vector quan-
tity, as distinct from a scalar. In the first equation in
(3.1), e1, e2, e3 are unit vectors in the directions of the
three coordinate axes (e1 for the x-axis, e2 for the y-axis,
e3 for z-axis) and the vector equation r = xe1 +ye2 +ze3

simply means you can get to the point with coordinates
x, y, z by taking x unit steps (e1) in the x-direction, y
in the y-direction, and z in the z-direction. Remember
(Book 2) it doesn’t matter what order you take the steps
in (see Fig.19) – you get to exactly the same end point,
with coordinates x, y, z.

The second statement in (3.1) is just another way of
saying the same thing: the vector r has associated with
it the three numerical components x, y, z.
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One of the nice things about vector equations is that a
sum like c = a + b means the vectors on the two sides of
the = sign are equal component-by-component. A single
vector equation is equivalent to three scalar equations:

c = a + b means

c1 = a1 + b1, c2 = a2 + b2, c3 = a+b3. (3.2)

Usually, we’ll be working in terms of components; but
sometimes it helps to use vector language – if you’re in
trouble go back to Book 2.

As an example of using vectors in dynamics we’ll be
looking at the motion of a particle (or even a planet,
moving round the sun!) when the force acting on it
is not constant and its path is not a straight line. How
must the things we discovered in Chapter 2 be changed?
Does the principle of energy conservation, for example,
still hold good when we go from motion along a straight
line to motion along some curve in 3-space?

Clearly the work equation (2.1) must be extended from
1 dimension to 3. We’ll be needing a general definition
of the work done when a particle is moved along some
path, through an infinitesimal distance ds, but not al-
ways in the direction of the force acting. Let’s write the
corresponding bit of work done as (looking at Fig.20)

w = F cos θds = F · ds. (3.3)
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Here θ is the angle between the force, which is a vector
F, and the vector element of path, ds. The work done
is thus the magnitude F of the force times the distance
moved, cos θds, in the direction of the force; or, equally,
the force component F cos θ in the direction of the dis-
placement vector ds. The second form in (3.3) shows
this quantity as the ‘scalar product’ of the two vectors
F and ds – which you will remember from Book 2, Sec-
tion 5.4. (If you don’t, just take it as a bit of notation
for what we’ve described in words.) Now if we resolve
the vectors F and s into their components along x-, y-
and z-axes at the point we’re thinking of, the element of
work done (3.3) becomes simply

w = Fxdx + Fydy + Fzdz, (3.4)

where dx, dy, dz are the three components of the path
element ds. In other words, each component of the force
does its own bit of work and adding them gives you the
work done by the whole force – in any kind of displace-
ment!

You’ll be wondering why the letter w has been used
for the very small element of work done, instead of dw,
though dx, dy, dz have been used for small distances.
That’s because the distance between two points depends
only on where they are (on their positions) and not on
how you go from one to the other: the small separations
are differentials as used in Calculus (Book 3). But the
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work done in going from one point to another is not like
that: if you drag a heavy object over a rough surface,
going from Point A to point B, you’ll soon find that the
work you have to do depends on what path you follow
– the longer the path and the more work you have to
do! So it would be wrong to use calculus notation for
something that is not a differential. More about this in
the last Section of this Chapter.

What force are we talking about in setting up equa-
tion (3.4)? In Sections 2.1 and 2.2 we met two kinds of
force: one was the weight of a particle and came from
the field due to gravity (you can’t see it, but you know
it’s there because the particle falls; the other was a force
you apply to the particle, by lifting it to feel the weight.
When you just stop it falling the two forces are equal
but opposite, the resultant force is zero and the particle
is in equilibrium. By moving something slowly (no ki-
netic energy!) the work you do on the particle is stored
in the particle as potential energy. But, for a particle
moving freely in an orbit (no touching!), the work w is
being done by the field and is ‘wasted’ work in the sense
that the particle is losing its ability to do any further
work (which is its potential energy): so w = −dV and
(3.4) can be rewritten as

dV = −(Fxdx + Fydy + Fzdz). (3.5)

(Note that V , defined in Section 2.1 for a very special
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example, depended only on position – was a function of
position – so a small difference could be correctly called
dV : now we’re thinking of the general case and we’re
going to find the same thing is true.)

If you want to get that PE back then you must take the
particle slowly back to where it came from by applying
equal but opposite forces at every point on the path:
that means changing the signs of Fx, Fy, Fz to get a pos-
itive dV – which will then be the increase in PE arising
from the work you have done on the stone.

Now let’s get back to the freely moving particle and ask
if the total energy (PE plus KE) is conserved during the
motion. To do that, we must now look at the kinetic
energy K.

The KE is a scalar quantity, K = 1
2
mv2, where v is the

magnitude of the velocity (i.e. the speed), and is eas-
ily written in terms of the velocity components because
v2 = vx

2 + vy
2 + vz

2. Thus

K = 1
2
m(vx

2 + vy
2 + vz

2). (3.6)

To find how K changes with time we can differentiate
(Book 3, Section 2.3):

dK

dt
= 1

2
m

(

2vx
dvx

dt
+ 2vy

dvy

dt
+ 2vz

dvz

dt

)

.

But, by the second law, m(dvx/dt) = max = Fx, and
similarly for the other components. On putting these
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results into the formula for dK/dt we get

dK

dt
= Fxvx+Fyvy+Fzvz = Fx

dx

dt
+Fy

dy

dt
+Fz

dz

dt
= −dV

dt
,

(3.7)
where (3.5) has been used.

This result is the differential form of the energy con-
servation principle. When a particle moves along any
infinitesimal element of path (represented by a displace-
ment vector ds), following Newton’s second law, the
change in total energy E = K + V is zero:

dE = dK + dV = 0. (3.8)

A finite change, in which the particle moves from Point 1
on its path to Point 2, will then be a sum of the changes
taking place in all the steps ds. And

∆E = ∆K + ∆V = 0, (3.9)

where ∆K = (1
2
mv2)2 − (1

2
mv2)1 and

∆V =

∫ 2

1

−Fxdx +

∫ 2

1

−Fydy +

∫ 2

1

−Fzdz) = V2 − V1.

(3.10)

The integral in (3.10) is called a “path integral”, a sum
of contributions from all elements ds of the path leading
from from Point 1 to Point 2. The remarkable thing
about this path integral is that it doesn’t depend at all
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on the path itself! It has exactly the same value for
any route leading from Point 1 to Point 2. We’ll say
more about this at the end of the Chapter. But here
the important thing is that (3.9) is true for motion of
a particle along any path, however long and curved it
may be, when it moves according to Newton’s second
law. The principle of energy conservation, which we
first met in Section 2.2, evidently applies very generally
– as we’ll see in the next two Sections.

3.2 Motion of a projectile

Something you throw or shoot into the air is called a
“projectile”: it could be a small pebble from your cata-
pult, or a bullet from a gun. And it moves, under a con-
stant force (that due to gravity), according to Newton’s
second law. The problem is to find its path. This exam-
ple is different from the one in Section 2.3 – the falling
stone – because the motion is now two-dimensional: the
projectile may start with a velocity component Vx, in the
x-direction (horizontally), and a component Vy in the y-
direction (vertically); and the only force acting (leaving
out the small resistance of the air) is that due to gravity,
which is mg and acts vertically downwards. This is all
shown in Fig.21a, where V indicates the velocity vector
at the start and • shows the projectile at point P(x, y)
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at a later time t.

So how does the projectile move?

Let’s take t = 0 at the start of the motion: then at any
later time t the components of position, velocity, and
acceleration will all be functions of t; call them (in that
order)

x(t), y(t), vx(t), vy(t), ax(t), ay(t). (3.11)

At the start of the motion, we can take

x(0) = y(0) = 0 (the origin),

vx(0) = Vx, vy(0) = Vy (given),

ax(0) = 0, ay(0) = −g (a constant).

Motion with constant acceleration was studied in Chap-
ter 2 of Book 3 and the results were used again here in
Section 2.2; to summarize

Velocity increase at time t is v = at

Distance gone is s = 1
2
at2.

For the projectile we can use the same results for each of
the two components, so we need only change the names
of the variables. The equations become

vx(t) = Vx + ax(t) = Vx, x(t) = Vxt,
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vy(t) = Vy + ay(t) = Vy − gt, y(t) = Vyt− 1
2
gt2,

where it was remembered that at gives the velocity in-

crease as time goes from zero to t and that the starting
velocity is, in this example, non-zero – with components
Vx, Vy.

We can now plot the path of the projectile: at time t its
coordinates will be

x = Vxt, y = Vyt− 1
2
gt2. (3.12)

In Fig.21b the whole curve is sketched, up to the point
where the projectile hits the ground.
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y-axis

V •
F = mg

P(x, y)
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Figure 21a Figure 21b

Usually, when we plot the curve representing a function
y = f(x), the value of y (the dependent variable) is given
directly in terms of x (the independent variable) by some
formula. But here both x and y are expressed in terms
of another variable t (the time), which is a parameter :
together they give a parametric representation of the
function y = f(x). However, if we want the more usual
form, we can easily eliminate the parameter t; because
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the first equation in (3.12) tells us that, given x, the
time must be t = x/Vx – and if we put that value in the
second equation we find

x = Vxt, y = Vyt− 1
2
gt2,

y = (Vy/Vx)x− 1
2
(g/V 2

x )x2, (3.13)

which is of the second degree in the variable x and de-
scribes a parabola.

From the equation for the path we can find all we want
to know. How far does the projectile go before it hits
the ground? Put y = 0 in (3.13) and you get

x

(

Vy

Vx
− g

2V 2
x

x

)

= 0

One solution is x = 0, the starting point, and the other is
(get it yourself) x = 2(VxVy)/g; this is called the range
– the maximum horizontal distance the projectile can
go, for a given initial velocity.

And how high does the projectile go? The maximum
value of the function y = f(x) (or at least a value for
which the slope of the curve is zero - in this case it will
be the top) is reached when the first derivative (dy/dx)
is zero. So let’s put

dy

dx
=

Vy

Vx
−
(

g

V 2
x

)

x = 0.
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This tells us that the highest point is reached when x =
(VxVy)/g; and on putting this value in (3.13) (do it!)
you’ll find the corresponding value of y is 1

2
V 2

y /g.

Before ending this Section, we should note that if we
don’t want to know the whole path of the projectile –
but only to answer questions like “how far?” and “how
high?” – it’s often quicker to use the energy conser-
vation principle. Thus, when the force acting has only
a (vertical) y-component the velocity x-component will
not change from its initial value Vx; so its contribution
to the KE will always be 1

2
mV 2

x and the whole KE will
be 1

2
m(V 2

x + v2
y). The PE will depend on the height y

only and, measured from ‘ground’ level, will be mgy.
Energy conservation then means that the constant total
energy (KE + PE) will be

E = 1
2
m(V 2

x + V 2
y ) + 0 initially,

= 1
2
mV 2

x + 1
2
mv2

y + mgy at any later time

and thus (x-terms cancelling) 1
2
mV 2

y = 1
2
mv2

y +mgy. To
get the maximum height we simply put vy = 0 (upward
velocity fallen to zero) and find the corresponding y-
value from 1

2
mV 2

y = mgy – giving the same result 1
2
V 2

y /g
as before.
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3.3 A numerical method

(A note to the reader. There’s a lot of arithmetic in this

Section and the next: you don’t have to work through it

all – just check a few lines here and there to make sure you

understand what’s going on.)

In the last Section we found the path of the projectile
analytically – using mathematical analysis. It’s not al-
ways easy, or even possible, to solve problems that way:
but if you know the basic equations – in this case New-
ton’s second law – you can always get there by using
only simple arithmetic! To show how to do it we’ll take
the projectile problem again.

The coordinates and velocity components are all func-
tions of time t, so we’ll write them as x(t), y(t), vx(t), vy(t)
and set things going at t = 0, with the initial values

x(0) = 0, y(0) = 0, vx(0) = 20, vy(0) = 20.
(3.14)

Here we’ve left out the units, but distances will be in
(metres) m, velocities in ms−1, accelerations in ms−2;
and we know the units will ‘look after themselves’ as
long as we’re careful about physical dimensions (see, for
example, Section 2.1).

Let’s go step by step from any starting value of t, using
what Newton’s law tells us and letting t → t + ǫ, in
each step, ǫ being a small time interval (e.g. 0.1 s). The
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increases in coordinates x and y are then, respectively,
ǫvx and ǫvy; and the new coordinates at the end of the
step will be

x(t + ǫ) = x(t) + ǫvx, y(t + ǫ) = y(t) + ǫvy.

But what values should we give to the velocity compo-
nents? – because they will be changing when forces act
and produce accelerations. Thus, vx and vy will change
by ǫax and ǫay during the step from t to t + ǫ: the
value of vx will be vx(t) at the beginning of the step
and vx(t) + ǫax at the end, and similarly for vy. To al-
low for the change in velocity components, we’ll use the
values corresponding to the mid-point of the step, with
1
2
ǫ in place of the full ǫ; so instead of taking, for exam-

ple, x(t + ǫ) = x(t) + ǫvx(t), we take x(t + ǫ) = x(t) +
ǫvx(t + 1

2
ǫ). This means the velocity components have

to be calculated at times ǫ apart, but halfway through

successive intervals: to get vx(t + 1
2
ǫ) from vx(t − 1

2
ǫ)

we’ll simply add ǫ×acceleration, taking the acceleration
at the midpoint which is now ax(t).

Our working equations for calculating quantities at time
t + ǫ in terms of those at time t will now be – for the
coordinates

x(t + ǫ) = x(t) + ǫvx(t),

y(t + ǫ) = y(t) + ǫvy(t) (3.15)
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– but for the velocities we should use

vx(t + 1
2
ǫ) = vx(t− 1

2
ǫ) + ǫax(t),

vy(t + 1
2
ǫ) = vy(t− 1

2
ǫ) + ǫay(t). (3.16)

These last two equations allow us to ‘step up’ the times
by an amount ǫ, going from one interval to the next
for as long as we wish. For the first point, t = 0 and
we don’t have values of vx(−1

2
ǫ) – as there’s no interval

before the first – but we can safely use vx(0 + 1
2
ǫ) =

vx(0)+ 1
2
ǫax(0) (velocity = time × acceleration) to get a

reasonable start. And after that we can simply go step
by step, using (3.15) and (3.16).

You’ll see how it works out when we start the calcula-
tion. To do this we make Tables to hold the working
equations:

t x(t + ǫ) = x(t) + ǫvx(t + 1
2
ǫ)

y(t + ǫ) = y(t) + ǫvy(t + 1
2
ǫ)

vx(t + 1
2
ǫ) = vx(t− 1

2
ǫ) + ǫax(t)

vy(t + 1
2
ǫ) = vy(t− 1

2
ǫ) + ǫay(t)

and then one to hold them when we’ve put in the nu-
merical values we know:

t x→ x + 0.1× vx

y → y + 0.1× vy

vx → vx + 0.1× (0) = vx

vy → vy − 0.1× (−10) = vy − 1
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Here→ is used to mean “replace by”; and we’ve chosen a
‘step length’ ǫ = 0.1. The (constant) acceleration due to
gravity is ay ≈ −10 with horizontal component ax = 0.
Note that the line which holds the velocity components
gives the new values (on the left of the →) at time t + ǫ
– in terms of values two lines earlier, at time t − ǫ. To
remind us of this, the lines are labelled by the t-values
used in the calculation.

Now we’ll make similar Tables to hold the numbers we
calculate, using the rules above and the special starting
values for the entries at t = 0. Let’s do this for times t =
0.0, 0.4, 0.8, 1.2, 1.6, 2.0. The first few (double)-lines
in our Table of approximate x-components of position
and velocity come out as follows:

t = 0.0 x = 0.0
(0.05) vx = 20.0 + 0.05× 0.0 = 20.0
t = 0.1 x→ 0.0 + 0.1(20.0) = 2.0
(0.15) vx → 20.0 + 0.1(0.0) = 20.0
t = 0.2 x→ 2.0 + 0.1(20.0) = 4.0
(0.025 vx → 20.0 + 0.1(0.0) = 20.0
t = 0.3 x→ 4.0 + 0.1(20.0) = 6.0
(0.35) vx → 20.0
t = 0.4 x→ 6.0 + 0.1(20.0) = 8.0
(0.45) vx → 20.0
t = 0.5 x→ 8.0 + 0.1(20.0) = 10.0

Approximate values of the y-components are obtained
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in the same way and come out as follows:

t = 0.0 y = 0.0
(0.05) vy = 20.0 + 0.05× (−10) = 19.5
t = 0.1 y → 0.0 + 0.1(19.5) = 1.95
(0.15) vy → 19.5 + 0.1(−10) = 18.5
t = 0.2 y → 1.95 + 0.1(18.5) = 3.80
(0.025 vy → 18.5 + 0.1(−10) = 17.5
t = 0.3 y → 3.80 + 0.1(17.5) = 5.55
(0.35) vy → 17.5 + 0.1(−10) = 16.5
t = 0.4 y → 5.55 + 0.1(16.5) = 7.20
(0.45) vy → 16.5 + 0.1(−10) = 15.5
t = 0.5 y → 7.20 + 0.1(15.5) = 8.75

If you continue (try it!), you’ll get points (x, y) that lie
on the nice smooth curve shown in Fig.22.
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That was easy, and the results agree perfectly (can you
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say why?) with the exact results, obtained from the
formulas in Section 3.2, which are (0.0,0.0), (8.0, 7.2),
(16.0, 12.85), (24.0, 16.80), (32.0, 19.20), (40.0,20.00).

But what if we want to talk about a planet moving round
the sun? In the next Section we’ll find it’s just as easy.

3.4 Motion of the Earth around

the Sun

Suppose we have a single ‘particle’ (anything from a
small pebble to the Moon, or the Earth!) moving along
some path – like the one shown in Fig.20 – under the
action of some force F. All we need to know, to find the
path, is how the force depends on position of the par-
ticle; along with its position and velocity components,
x(0), y(0), z(0) and vx(0), vy(0), vz(0), at any time t = t0
– which we call the ‘starting time’ and usually put equal
to zero, t0 = 0. It all worked out nicely in the last
Section, where we used Newton’s law (acceleration =
force/mass) for each of the two components, to estimate
how the velocity and position changed as the time in-
creased by a small amount t → t + ǫ. But now we’re
going to do something a bit more exciting: will the same
equations and methods work just as well when the ‘par-
ticle’ is the Earth – the whole of our world – on its
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journey round the Sun? If they do, and allow us to cal-

culate that the journey will take about 365 days, then
we can feel pretty sure that the law of gravity really is
a universal law, applying throughout the Universe!

In Section 1.2 the force of attraction between two point
masses, m and M , was given in equation (1.2) as F =
GmM/r2, where r was the distance between them and G
was the ‘gravitational constant’. But now we’re working
in three dimensions, using vectors and components, this
must be written in a different way. Suppose the big mass
M (the Sun) is used as the origin of coordinates: then
the position vector of m (the Earth) will be

r = xe1 + ye2 + ze3,

as in Fig.19. The force F is along the line of r, but is
directed the opposite way – towards the origin – and
must therefore be a multiple of −r. Since r (the length
of r) is simply |r|, we can now write the force vector as

F =
GmM

r2

(−r

r

)

= −GmM

r3
r, (3.17)

where the factor −r/r, in the middle, is the unit vector

pointing from the Earth to the Sun. When we express
the final vector r in the form r = xe1 + ye2 + ze3, the
result is

F = Fxe1 + Fye2 + Fze3,
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where the components are

Fx = −GmM

r3
x, Fy = −GmM

r3
y, Fz = −GmM

r3
z.

(3.18)

We’re now ready to write down the equations of motion
for the Earth as it moves around the Sun, just as we
did for the projectile in the last Section. This path will
be the orbit of the Earth; and it will lie in a single
plane – for if you take this as the xy-plane then the
force F will never have a z-component to pull it out of
the plane. So let’s suppose the orbit is in the xy-plane
with the Sun at the origin and the Earth at the point
(x, y). The form of the orbit is shown in Fig.23a (see
p.70), which also shows the force vector F – directed
always towards the Sun. We’ll start the calculation at
time t = 0, when the Earth is at the point (•) labelled
‘Start’, with coordinates x(0), y(0).

The equation (mass)×(acceleration)=(force acting) then
becomes, for the two components,

ax =
dvx

dt
= −GM

x

r3
, ay =

dvy

dt
= −GM

y

r3
,

(3.19)
where the mass m has been cancelled from each equation
and we remember that, in terms of the coordinates x, y,
the distance from the Sun is r =

√

x2 + y2.

The calculation will follow closely the one we made for
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the projectile, the main difference being that the ac-
celeration is not constant, its components both being
non-zero functions of position (x, y). Instead of (3.14),
however, we take a starting point (t = 0) on the orbit,
with

x(0) = R0, y(0) = 0, vx(0) = 0, vy(0) = V0,
(3.20)

where R0 is the initial distance from the Sun and V0 is
the intial velocity, in a direction perpendicular to the
position vector.

Another difference, however, is that it’s no longer sen-
sible to work in units of kilogram, metres and seconds
when we’re talking about bodies with masses of many
millions of kilograms, moving at thousands of metres ev-
ery second. Wouldn’t it be easier to use, for example,
days or months? We know how to change from one set of
units to another, provided we know the physical dimen-
sions of the quantities we’re talking about (see Section
1.3). Velocity, for example, has dimensions of distance
÷ time; so we write [v] = LT−1 and if we multiply the
unit of length by a factor k then we must divide the
measure of any length by k – and similarly for the time
factor.

Suppose we choose an ‘astronomical’ unit of length as
L0 = 1.5 × 1011 m, which the astronomers tell us is
the average distance of the Earth, in its orbit, from the
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Sun; and the Month as the unit of time – 1 Month ≈ 30
days = 30 × 24× 3600 s = 2.592×106 s. The observed
value of the velocity of the Earth in its orbit is also well
known: it is about 30,000 m s−1 and we’ll take this as
the starting value of V0.

To express V0 in our new units we simply multiply the
value in ms−1 by two factors: (1.5 × 1011)−1 for the
length; and ((2.592 × 106)−1)−1 (i.e. 2.592 × 106) for
the time. The result is

V0 = (3× 104)

(

2.592× 106

1.5× 1011

)

L0 Month−1

≈ 51× 10−2 L0 Month−1.

To summarize, a reasonable value of the start velocity
seems to be about 0.51 distance units per month.

The only other quantity to express in our new units is
GM in (3.19): this has dimensions (check it for yourself,
using the data for G in Section 1.3) [GM ] = L3 T−2.
The value of GM looks enormous in standard units (the
Sun’s mass alone is about 1.99×1030 kg!), while G has
the value – measured in experiments here on the Earth
– 6.67×10−11 m3 s−2 kg. Expressed in the new units
(check it yourself!) you should find

GM = 0.264 L3
0 Month−2.

And now, at last, we can start the calculation! – and we
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can just use the numbers, from now on, knowing that
the units are sure to come out right in the end.

Our working equations for calculating quantities at time
t+ǫ in terms of those at time t will now be just like those
in (3.15) and (3.16). For the coordinates,

x(t + ǫ) = x(t) + ǫvx(t),

y(t + ǫ) = y(t) + ǫvy(t) (3.21)

– but for the velocities we should use

vx(t + 1
2
ǫ) = vx(t− 1

2
ǫ) + ǫax(t),

vy(t + ǫ) = vy(t− 1
2
ǫ) + ǫay(t). (3.22)

The only difference between these equations and those
for the projectile is that the acceleration components
ax, ay are given by (3.19): they must be calculated in
every step instead of being constants (0 and −g). These
last two equations allow us to ‘step up’ the times by
an amount ǫ, going from one interval to the next for as
long as we wish. Again, for the first point, t = 0 and
we don’t have values of vx(−1

2
ǫ) – as there’s no interval

before the first – but we can safely use vx(0 + 1
2
ǫ) =

vx(0) + 1
2
ǫax(0) (velocity = time × acceleration) to get

a reasonable start. And we can do exactly the same for
the y-component. After that we simply go step by step,
using (3.21) and (3.22).

77



Let’s take ǫ = 0.2, which is 6 days (1
5

Month in our work-
ing units) and make the first few time steps, starting
from the values in (3.20) with R0 = 0.5 and V0 = 0.51.
Let’s make one Table to show how the x-components
change; and another for the y-components.

First, for the x-components, we find:

t
t = 0 x = 1.0

vx = −0.0264

t = ǫ x = 0.9947

r =
√

.99472 + .10202 = 0.9999
ax = −0.264(0.9947)(1.0003) = −0.2627
vx → −0.0264− 0.2627(0.2) = −0.0789

t = 2ǫ x = 0.9789

r =
√

.97892 + .20292 = 0.9994
ax = −0.264(0.9789)(1.0012) = −0.2587
vx → −0.0789− 0.2587(0.2) = −0.1306

t = 3ǫ x = 0.9528

(It would be nice to put x- and y-components, for any
given time, one after the other on the same line; but as
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the page isn’t wide enough you’ll have to go backwards
and forwards between the ‘x-Table’ (the first one) and
the y-Table to find what you need in making any given
time step.)

Secondly then, for the y-components, we get

t
t = 0 y = 0.0

vy = 0.5100

t = ǫ y = 0.1020

r3 = 0.9997, 1/r3 = 1.0003
ay = −0.264(0.1020(1.0003) = −0.0269
vy → 0.5100− 0.0269(0.2) = 0.5046

t = 2ǫ y = 0.2029

r3 = 0.9988, 1/r3 = 1.0012
ay = −0.264(0.2029)(1.0012) = −0.0536
vy → 0.5046− 0.0536(0.2) = 0.4939

t = 3ǫ y = 0.3017

Notice that, at any given time (e.g. t = 2ǫ = 0.4), the
two lines after the calculation of the coordinates (x, y)
are used in getting the corresponding components of the

79



acceleration (ax, ay) – which are then used to get the
average velocity components (next line), needed for cal-
culating the distances gone in the next time step (up to
t = 3ǫ = 0.6).

If you keep going for 60 time steps you’ll reach the point
marked ‘Day 360’. The (x, y)-values obtained in this
way are plotted in Fig.23a.
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Each time step represents 6 days and the orbit has closed
almost perfectly in 360 days – that’s not a bad approx-
imation to 1 year when you remember that we’re doing
a rough calculation, using only simple arithmetic (even
though there’s quite a lot of it!).

It may seem unbelievable that, starting from measure-
ments made by the astronomers and a value of G ob-
tained by measuring the force of attraction beteen two
lead balls in the laboratory, we can calculate the time
it will take the Earth to go round the sun – 150 million
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kilometres away! So you should check the calculation
carefully.

To help you on your way, the last few steps, leading from
t = 58ǫ up to t = 60ǫ (360 days), are given below:

t
58ǫ x = 0.9784 y = −0.2059

ax = −0.2585 ay = −0.0544

59ǫ x = 0.9944 y = −0.1050

ax = −0.2626 ay = 0.0277

60ǫ x = 1.000 y = −0.0030

Only the acceleration components are given, for time
t = 58ǫ, so you’ll need the velocities vx and vy for t =
57ǫ: these are vx = 0.1321 and vy = 0.4935. Now you
should be able to fill in the missing values, just as in
going from t = 2ǫ to t = 3ǫ.

You should note that the orbit is not exactly a circle,
but rather an ellipse (with a ‘long diameter’ and a ‘short
diameter’); but the diameters differ only by less than
one part in fifty. However, if you use different starting
conditions at t = 0, you can get very different results:

81



Fig.23b, for example, shows the effect of changing the
starting velocity of the Earth in its orbit from 0.51 units
to 0.40. In that case it would be drawn into a more ‘lop-
sided’ orbit, getting much closer to the Sun for much of
its path; and the length of the year would be very dif-
ferent. Other planets, like Mars and Venus, have orbits
of this kind: but more about such things later and in
other Books of the Series.

A very important final conclusion is that once you know
the equations of motion, and the values of the coor-
dinates and velocity components at any given time t0,
then the way the system behaves at all future times is
completely determined: we say that the equations are
deterministic – nothing is left to chance! This is a
property of many of the key equations of Physics.

3.5 More about potential energy

In Section 4.1 we found that the idea of ‘conservation
of energy’ applied even for a particle moving along a
curved path (not only for the up-down motion studied
in Section 2.1), provided Newton’s second law was sat-
isfied. In all cases the gain in kinetic energy, as the
particle went from Point 1 to Point 2, was exactly the
same as the loss of potential energy – defined as the
work done by the forces acting. The differential form
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of this result, dK + dV = 0, where dK and dV are
infinitesimal changes in K and V then led us to the re-
sult K + V = constant at all points on the path. (If
you’re still not sure about using differentials look back
at Section 2.3 in Book 3.)

This result means that the forces acting on the parti-
cle must have a special property: they are said to be
conservative forces and when this is this case it is
possible to define a potential energy function V (x, y, z)
– a function whose value depends only on position and
whose differential dV appears in (3.5). And for forces
of this kind it is possible to get the force components at
any point in space from the single function V (x, y, z).

To see how this can be done, think of the differentials
dV, dx, dy, dz simply as very small related changes, when
you pass from point (x, y, z) to an infinitely close point
(x+dx, y +dy, z +dz). We can then define a derivative
of V with respect to x as the limit of the ratio dV/dx
when only x is changed: it is called a partial derivative
and is written ∂V/∂x, with a ‘curly’ d. Thus

∂V

∂x
= lim

dx→0

dV

dx
, (y, z constant). (3.23)

You will have met partial derivatives already in Book
3: there’s nothing very special about them except that
in getting them you change only one variable at a time,
treating the others as if they were constants. When
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you have a function of three variables, like the PE with
V = V (x, y, z), you have three partial derivatives at
every point in space – the one given in (3.23) and two
more, with the ‘special’ direction being the y-axis or the
z-axis.

The force components in (3.5) can now be defined as
partial derivatives of the potential energy function:

Fx = −∂V

∂x
, Fy = −∂V

∂y
, Fz = −∂V

∂z
, (3.24)

where it is understood that the variables not shown, in
each derivative, are kept constant.

Now, after all that work (brain work!), we can give a
general definition of the potential energy of a particle.
We start from any point O (calling it the ‘origin’ or the
‘zero of potential energy’) and carry the particle from
O to any other point P. The PE given to the particle is
then the work done in moving it from O to P:

VP − VO = W =

∫ P

O

(Fxdx + Fydy + Fzdz).

If we label the points as ‘0’ and ‘1’, this can be written

V1−V0 = W (0→ 1) =

∫ 1

0

(Fxdx+Fydy+Fzdz), (3.25)

so V1 = V0 + W (0→ 1), the PE at Point 1, will always
contain a constant V0, which can have any value what-
ever (an ‘arbitrary ’ value depending on where we choose
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to start from. You might ask what use is a definition
like that – if you can never say what value the PE really
has at any point in space! But the fact is that the only
things we need are differences between the values of V
at any two different points; and

V2 − V1 = (V0 + W0→2)− (V0 + W0→1) = W0→2 −W0→1,

where the arbitrary constant V0 has disappeared.

Finally, suppose we carry the particle from Point 0 to
Point 1 and then back again, from 1 to 0, along the same
path – as indicated in Fig.24a. The whole change in PE
will be zero (we’re back at the starting point, as if we’d
never set off), but it is the sum of two parts:

W (0→ 1) =

∫ 1

0

(Fxdx+Fydy+Fzdz) (outward journey)

and

W (1→ 0) =

∫ 0

1

(Fxdx+Fydy+Fzdz) (return journey).

Since the sum must be zero, the second path integral
must be the negative of the first: in words, changing the

direction of the path changes the sign of the work done.
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1 1

2 2W(→) W(→)

W(←)
W(←)

Figure 24a Figure 24b

Now it doesn’t matter what names we give the two
points: if we call them 1 and 2 we can say

∫ 1

2

(Fxdx+Fydy +Fzdz) = −
∫ 2

1

(Fxdx+Fydy +Fzdz).

(3.26)
This is also a known result from calculus (Book 3): in-
terchanging the upper and lower limits in a definite in-
tegral reverses the sign. But suppose now we make the
return journey by a different route (as in Fig.24b). The
work done, being independent of the path from Point 2
to Point 1, will still be the negative of the work done in
the outward journey: but it now follows that the work
done by the applied force in going round any closed path
or ‘circuit’ is zero. Mathematicians often use a special
symbol for this kind of path integral, writing it as

∮

(Fxdx + Fydy + Fzdz) = 0. (3.27)

Forces that can be derived from a potential energy func-
tion, as in (3.24) are said to be “conservative”. Now we
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have another definition: conservative forces are those for
which the path integral of the work they do, taken round
any closed circuit is zero.

As you must know, not all forces are conservative. If you
slide an object over a rough surface it doesn’t go easily,
even if the surface is horizontal and the motion is not
opposed by gravity: the motion is resisted by friction
and the force arising from friction opposes any force you
might apply. ‘Push’ or ‘pull’, the frictional force is al-
ways in the opposite direction; so however you go round
a closed circuit, the work integral (3.27) must be non-
zero – work is always done and you never get it back.
Another example is the frictional force arising when a
fast-moving object pushes its way through the air; the
frictional force is always in a direction opposite to the
direction of motion. There are other examples of non-
conservative forces; but we won’t meet them for a long
time. Until then, we’ll usually be assuming that fric-
tion can be neglected, at least in a first approximation –
which can later be improved by adding terms that will
allow for it.

Exercises – to be added (30 june 07)
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Chapter 4

From one particle to
many – the next big
step

4.1 Many-particle systems

Suppose we have a collection of many particles, instead
of just one. How will they move when forces act on
them? This is an important question because we nearly
always want to know about big systems, like the trucks
in Fig.20 or the whole Earth, moving around the Sun
(Fig.23); and even if they are small compared with the
whole Universe we can hardly call them “particles”. Yet
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we’ve treated them just as if they were single mass points,
each body being at some point in space (with a position
vector r) and having a certain mass (m). It seems like a
miracle that everything came out right – that the Earth
went round the Sun in about 360 days and so on – that
Newton’s second law worked so well. Now we want to
know why.

So instead of asking how mr changes when a mass point
is acted on by forces, let’s ask the same question about
a collection of mass points with mass m1 at point r1,
m2 at point r2, and so on. The total mass of the whole
collection, which we’re going to think of as a single body,
will then be

M = m1 + m2 + m3 + ... = Σimi (4.1)

where we use the usual shorthand notation Σi to mean
the sum of all similar terms, with the index i taking
values 1, 2, 3, ... for however many particles we have.
And just as M will take the place of a single mass m,
we’ll define a quantity

MR = m1r1 + m2r2 + m3r3 + ... = Σimiri (4.2)

to take the place of mr. We’ll ask how this quantity
changes when forces act on the system.

Suppose a force f1 is applied to the mass m1, a force f2
to m2, etc., these forces being ‘external’ to the system
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(e.g. forces due to gravity, or pushes and pulls applied
‘by hand’). All this is shown in Fig.26(a), for a set of
particles in a plane, but everything we do will apply just
as well in three dimensions. Each particle will move, ac-
cording to Newton’s second law, m1 starting with an
acceleration a1 such that m1a1 = f1, and so on. In cal-
culus notation this means

miai = mi
d2ri

dt2
= fi (for all i).

The quantity R, defined in (4.2) is the position vector of
the centroid, or centre of mass of the system. It is

R =
m1r1 + m2r2 + m3r3 + ...

m1 + m2 + m3 + ...
=

Σimiri

Σimi

. (4.3)

x-axis

y-axis
•1

•2

•3

f1 f2

f3

f12
f21 f23

f32

f31
f13

Figure 26a

x-axis

y-axis

f1
f2

f3
F

F

Sum to get F→

Figure 26b
As usual, if we want to use coordinates instead of vec-
tors, we remember that a single vector equation cor-
responds to three equations for the separate x-,y- and
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z-components. If r1 = x1e1 + y1e2 + z1e3 and R =
Xe1 + Y e2 + Ze3, then the coordinates of the centroid
will be

X =
m1x1 + m2x2 + m3x3 + ...

m1 + m2 + m3 + ...
=

Σimixi

Σimi
, (4.4)

with similar equations for Y and Z.

Now for the miracle! If you differentiate (4.3) twice,
with respect to time, and remember that all the masses
are simply numerical constants, you find that

d2R

dt2
=

m1

M

d2r1

dt2
+

m2

M

d2r2

dt2
+ ... =

1

M
f1+

1

M
f2+ ... (4.5)

When you write F for the vector sum of all the forces
acting on the particles of the whole system, and A for
the sum of their separate acceleration vectors i.e.

F = f1 + f2 + ... , A = a1 + a2 + ... , (4.6)

what do you get from (4.5)? It becomes simply, multi-
plying both sides of the equation by M ,

F = MA = M
d2R

dt2
(4.7)

– force = mass × acceleration. But now the ‘force’ is
something you calculate, as the vector sum of the forces
acting on all the separate particles, and so is the accel-
eration – which refers to a point in space (the ‘centre of
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mass’) and not to the motion of any real particle. That
is the miracle: Newton’s second law tells us how the
whole system would move if we could put all its mass at
a point that we have invented and called the ‘centroid’
or ‘mass centre’. But – you will say – it can’t really
be so easy. We’ve been talking about independent par-
ticles, each one of them feeling only its own ‘external’
force, like gravity or a push applied from outside.The
particles inside any real object must also feel some kind
of internal forces, which hold them all together, and we
don’t know anything about them. Or do we? It’s here
that Newton’s third law comes to the rescue: for every
action there is an exactly equal but opposite reaction.
So if we put all those forces into the vector sum in (4.6),
of all the forces acting on all the particles, they must all

cancel in pairs! We don’t have to worry about them.
Fig.25a shows three particles acted on by three external
forces f1, f2, f3, along with three pairs of internal forces
– the force f12 which pulls Particle 1 towards Particle 2,
the equal and opposite reaction f21 which pulls Particle
2 towards Particle 1, and so on. To get the sum of all
the force vectors you have to put all the arrows head-
to-tail, by shifting them but without changing their di-
rections, and the resultant sum is then represented by
the arrow that points from the first tail to the last head.
The order in which you take the arrows doesn’t matter
(vector addition is ‘commutative’, as you will remem-
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ber from Book 2) so you can follow each action with its
reaction – to get a zero vector, which does not change
the sum. In the end, only the external forces (shown
as the thicker arrows, f1, f2, f3, in Fig.25a) contribute to
the vector sum. They are equivalent to the single force
F = f1 + f2 + f3 shown in Fig.25b – and this is the force
which, if applied to a mass M = m1 + m2 + m3 sitting
at the centroid • , will tell us how the whole 3-particle
system will move from one point in space to another,
according to equation (4.7).

That is the second part of the miracle: a collection of
particles, acted on by external forces, moves through
space as if its particles were all squeezed together into a
single point mass at the centroid – even when the par-

ticles interact. The interactions may be due to their
gravitational attraction or to sticks or strings that fas-
ten them together: it doesn’t matter. That’s why, in
the last Section, we were able to treat our whole world
– with all its mountains and seas, forests and cities (and
you and me!) – like a single enormously heavy pebble
travelling around the sun!

There’s one thing we do need to worry about, how-
ever. We’ve been thinking about bodies moving from
one place to another, all their parts moving in the same
direction: this is called translational motion. But
there can still be other kinds of motion: even if the vec-
tor sum of all the forces acting is zero and the centroid
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of the system is not moving, the forces may tend to turn

the system around the centroid, producing rotational
motion. In a later Section we’ll find how to deal with
rotations; but until then we’ll think only of translational
motion.

4.2 Conservation of linear

momentum

In earlier Sections we found a principle of energy conser-
vation, the total energy E (KE + PE) being conserved
in time: in other words, E after an interval of time (∆t)
= E before (i.e. at ∆t = 0, provided the forces act-
ing were of a certain kind. Another important principle
refers to collisions in which two or more particles may
be involved: it states that the total momentum of the
particles after a collision is the same as that before, the
total momentum being

MV = m1v1 + m2v2 + m3v3 + ... = Σkmkvk (4.8)

as follows from (4.2) on differentiating with respect to
time and putting dR/dt = V and dri/dt = vi.

When there are no external forces acting on the system
of particles, F = 0, and (4.7) tells us that A = 0 and
hence V in the last equation must be a constant vector.
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In this case the vector sum of the particle momenta in
(4.8) must have exactly the same value before and after
the collision:

m1v1i+m2v2i+m3v3i+ ... = m1v1f +m2v2f +m3v3f + ... ,
(4.9)

where the labels ‘i’ and ‘f’ mean ‘initial’ and ‘final’ values
(before and after).

The only collision we’ve studied so far was that between
a bat and a ball in Section 2.4. There, the important
thing was that the force involved was an impulse, creat-
ing almost at once a sudden change of momentum, and
that other forces were so small they could be neglected.
But this is generally true in collisions; the forces act-
ing do so only at the moment of contact; they produce
changes of momentum; and the conservation of momen-
tum, expressed in (4.9), is the key equation to use.

Let’s go back to a similar example, where a ball of mass
m is struck by a hammer of mass M (as in the game of
‘croquet’, pictured in Fig.27(a).

velocityhammer

Vi

ball

Figure 27a

velocityhammer

Vf

ball

vf

Figure 27b
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In Section 2.4 the mass of the ball was taken as m =
0.2 kg and the blow was enough to give it a velocity
of 10 ms−1. The hammer was not considered; but we’ll
suppose it has a mass M = 1 kg and is travelling at 10
ms−1 when it hits the ball; and we’ll take the left-right
direction as positive for all velocities. We then have (still
using subscripts i, f for ‘initial’ and ‘final’) :

Initially,

total momentum = MVi + mvi

= (1kg)× (10 ms−1) + 0

= 10 kg ms−1.

Finally,

total momentum = MVf + mvf

= MVf + (0.2kg)× (10 ms−1)

On equating the two values of the total momentum we
get

MVf = 10kg ms−1 − 2kg ms−1 = 8kg ms−1,

so, since M = 1 kg, the hammer velocity is reduced from
10 to 8 m s−1 (shown by the shorter arrow).

What about the kinetic energy, before and after the col-
lision?
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Initially, total KE =1
2
Mv2

i = 1
2
100 kg m2s−2 = 50 kg m2s−2

Finally, total KE = 1
2
MV 2

f + 1
2
mv2

f = 1
2
64 kg m2s−2 +

1
2
(0.2kg)× (100 m2s−2).

So before the collision the KE is 50 kg m2s−2, or 50
Joules (with the named units first used in Section 2.1);
but after collision the KE is reduced to 42 J. Where has
the lost KE gone? Well, the forces acting in a colli-
sion don’t have to be conservative: there is no potential
energy function and no principle of conservation of the
total energy. A collision usually makes a loud noise and
it generates heat (the hammer and the ball can both get
quite warm); and both are forms of energy – even if 8
Joules is hardly enough to heat a spoonful of water.

4.3 Elastic and inelastic collisions

Are there any kinds of collision in which no kinetic en-
ergy is lost? – at least in good approximation. An ex-
ample will remind you that there are. You must at some
time have bounced a rubber ball on a stone pavement.
When you drop it, its downward velocity increases (PE
turning into KE) and when it hits the pavement it’s go-
ing quite fast; then it bounces back, coming almost up
to your hand; then down again and so on. If it came
all the way back, the upward velocity after the bounce
(collision) would be the same as the downward velocity
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when it hit the pavement. And you could say the col-
lision was ‘perfectly elastic’ – there would be no loss of
KE. Nothing is quite perfect, or the ball would go on
bouncing forever! But the example gives us the idea:
we define an elastic collision as one in which there is
no loss of kinetic energy. And for such collisions we can
use the principle of energy conservation in addition to
that of momentum conservation.

On the other hand, if you try to bounce a lump of wet
clay it just doesn’t play! it simply says “shlop” and
sticks to the surface. And if two lumps of wet clay collide
they just become one; and you have an example of a
perfectly inelastic collision.

To see how important the kind of collision can be, we
can go back to the croquet hammer and ball. But let’s
not suppose the ball goes away with a velocity of 10
ms−1 (the velocity of the hammer when it struck the
ball) – which was only a guess anyway. Conservation of
momentum then requires that mvi +MVi = mvf +MVf

or

m(vi − vf) = M(Vf − Vi), (a)

in which both final values are now unknown. To get
them we need a second equation (to solve for two un-
knowns we need two equations); so we try assuming the
collision is perfectly elastic, which means the total ki-
netic energy will also be conserved. This gives us a sec-

98



ond condition: 1
2
m1v

2
1i + 1

2
m2v

2
2i = 1

2
m1v

2
1f + 1

2
m2v

2
2f .

And this means

m(v2
i − v2

f) = M(V 2
f − V 2

i ),

which can also be rearranged to give

m(vi − vf )(vi + vf) = M(Vf − Vi)(Vf + Vi). (b)

The initial velocities are given, vi = 0, Vi = 10 ms−1,
and the two equations, (a) and (b), are now enough to
give us both of the final velocities. Divide each side of
equation (b) by the corresponding side of (a) (the two
sides being in each case equal!) and you get

vi + vf = Vf + vi or vf − Vf = Vi − vi. (c)

But (a) and (c) together make a pair of simultaneous
linear equations: both must be satisfied at the same
time and they are linear in the two unknowns, which we
can call x = vf and y = Vf – so as to see them more
clearly. Thus, (c) in the first form can be written

y = vi + x− Vi,

while (a) becomes

m(vi − x) = M(y − Vi).

We can get rid of y in this last equation by substituting
the value y = vi + x − Vi from the one before it. And
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then we only have to get out the x by untangling the
messy thing that’s left. That’s a bit of simple algebra
(see Book 1, Chapter 3) so you can do it yourself: you
should get

x (= vf ) =

(

m−M

m + M

)

vi +

(

2M

m + M

)

Vi. (4.10)

If you do it the other way round, substituting for x in-
stead of y, you will find the solution for y:

y (= Vf) =

(

2m

m + M

)

vi +

(

2M

M −m

)

Vi. (4.11)

On putting in the numerical values we now find vf =
(50/3) ms−1 and Vf = (20/3) ms−1: so if the collision
is perfectly elastic the ball takes more than the initial
velocity of the hammer (indicated by the long arrow in
Fig.27(b)). And we can be sure that the total kinetic
energy will still be just what it was before the hit (be-
cause we made it so! – by supposing the collision to be
elastic). You can check the numbers: you should find
(250/9) J for the ball and (200/9) J for the hammer,
giving altogether the 50 J before the ball was hit.

And what if the collision is perfectly inelastic? – if the
hammer strikes a ball of wet clay. The two things, ham-
mer and ball, then stick together and become one. To
see what difference it makes, suppose the masses are the
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same as in the last example and that the hammer has
the same initial velocity. In this case we have:

Initially, total momentum = mvi + MVi = (1 kg) ×
(10 ms−1)

Finally, total momentum = (m + M)Vf = (1.2kg)× Vf ,

where Vf is the final velocity of hammer plus clay, mov-
ing as one, and is the only unknown. There must be no
change of total momentum, so

Vf =
(1 kg)× (10 ms−1)

1.2 kg
= (25/3)ms−1

As for the kinetic energy, it started with the value 50 J
but is now 1

2
(m+M)V 2

f = 1
2

1.2 kg× (25/3)2 (ms−1)2 =
(125/3) kg m2s−2 = 41.667 J – so more than 8 J of the
initial KE is lost, without any useful result (the ball is
still sticking to the hammer).

For the present, that’s all you need to know about the
conservation of momentum; but, remember, we’re talk-
ing about linear momentum and motion in a straight
line. Sometimes we’ll need to talk about the momen-
tum of, say, a wheel, spinning around an axis. That will
be angular momentum and we’ll begin to think about it
in the next Chapter.

Exercises (in preparation)
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Chapter 5

Rotational motion

5.1 Torque

Suppose we have a sytem of particles moving through
space with constant velocity V (which may also be zero)
and want to know what goes on inside the system. The
vector V refers to the centre of mass, which moves ac-
cording to (4.8) when external forces are applied to the
system. (Note that capital letters, like M, V, F, will now
be used as in Section 4.1 for quantities that refer to the
whole system – not to a single particle.) When the vec-
tor sum of these forces is zero

d

dt
(MV ) = m1

d2r1

dt2
+ m2

d2r2

dt2
+ ... = 0 (5.1)
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but this does not mean that m1(d
2r1/dt2) = 0 etc. for

each separate term in (5.1). It only means that one
point R with coordinates X, Y, Z (given in (4.4) etc.)
will move with constant (or zero) velocity. We can take
it as a new origin and call it O. What else can happen?
The system can turn around O, which from now on we’ll
think of as a fixed point.

Let us take two axes, e1 and e2 in the plane of r1, so that
(see Fig.28a)

r = xe1 + ye2, (5.2)

The vector r is the position vector of the point with
coordinates (x, y) relative to the centre of mass, which
we’ll often call the ‘CM’. And we’ll suppose one of the
particles, of mass m, is at point (x, y). When particle
labels are needed they are sometimes put in the upper
position, so they don’t get mixed up with indices for dif-
ferent vectors or components; but for the moment let’s
just leave them out.

x-axis
CM

y-axis

r •m

xe1

ye2

θ

Figure 28a

x-axis
CM

y-axis

r •m
f

xe1

ye2

θ

Figure 28b
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A third axis, along the unit vector e3, can be chosen us-
ing the ‘corkscrew rule’ (Book 2, Section 5.4): e3 shows
the direction in which a corkscrew would move in a turn
that sends e1 towards e2.

When m(d2r/dt2) 6= 0 it measures the force f acting on
the mass m (Fig.28b), which is trying to move it so that
its position vector r will turn around the axis e3. You
know quite a lot about rotations from Chapter 4 of Book
2. A rotation around e3 turns a unit vector e1 so that
it will point along r in Fig.28b and is measured by the
rotation angle θ, counted positive when e1 turns towards
e2.

A turning force is called a torque. How do we measure
a torque? Suppose you have to loosen a nut on a bolt
that sticks upwards out of an iron plate – in the plane
of the paper in Fig.29a.

x-axis

y-axis

‘arm’

f

Figure 29a

x-axis
CM

y-axis

f

Figure 29b

You can use a ‘key’ or ‘wrench’, which fits over the nut
and has a long handle, to which you can apply a force
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– as shown in the Figure. The key lies along the x-axis,
while the nut you’re trying to loosen is at the origin;
and the force is in the direction of the y-axis.

The longer the ‘arm’ of the key, the greater the torque,
and the easier it is to turn the nut; the arm ‘magnifies’
the turning effect of the force. When the force is per-
pendicular to the arm it has the greatest effect. So let’s
try a definition: the torque of a force around an axis is
measured by the product

Torque = (force applied) × (perpendicular distance of
its line of action from the axis)

How does this translate into symbols? If we use a for
the length of the arm and f for the magnitude of the
force, then the torque of f about the z-axis e3 will be
the product af . We can’t call it t, because t always
stands for the time – and we find it everywhere. So let’s
use the corresponding Greek letter, τ (‘tau’), and then
we won’t get mixed up. Now the arm a, in Fig.29a, is
the x-coordinate of the point (x, y) at which the force
is applied; f is the y-component (the only one) of the
vector f; and τ is going to be a component of the torque
around the z-axis. So let’s add the labels and write

τz = xfy. (5.3)

This component of the torque is also called the moment
of the force about the z-axis. But to get a more general
definition we have to look at the case shown in Fig.29b,
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where the key does not lie along one of the axes and the
applied force is not perpendicular to it. Of course you
can use the same definition in words, but then you have
to work out the perpendicular distance from the origin
to the line of action of the force. There’s a simpler way,
which is quite general and looks much nicer.

You know from Section 4.1 that any force can be ex-
pressed as the vector sum of two other forces acting at
the same point: so f in Fig.29b is exactly equivalent to

f = fxe1 + fye2 = fx + fy, (5.4)

where fx, fy are the vectors, parallel to the two axes, with
magnitudes fx, fy. The torque applied by the fy, which
is perpendicular to the x-axis, is xfy – exactly as in (5.4)
– and is in the positive (anticlockwise) sense. But the
torque due to fx, perpendicular to the y-axis, has an arm
of length y and acts in the negative (clockwise) sense –
giving a turning force −yfx. The two forces together
give the torque about the z-axis:

xfy − yfx = τz, (5.5)

which works for any directions of the key, and the force
acting at point (x, y), in the xy-plane. Remember the
order of the x,y,z and you can’t go wrong: x (first term)
turning towards y (second term) gives the z-component
τz.
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The beauty of this result is that it holds even in three

dimensions ! This must be so, because if you rotate the
whole system about the origin – so that the axes x,y,z
turn into new axes pointing along the y,z,x directions –
everything will look just the same from inside the sys-
tem. (This is what we called an “invariance principle”
in Book 2: there’s nothing special about different di-
rections in space, so rotating everything will make no
difference to our equations.) In this way you will find,
instead of (5.5), three equations, which can be collected
into

xfy−yfx = τz, yfz−zfy = τx, zfx−xfz = τy. (5.6)

It’s enough to remember xyz→ yzx→ zxy, in ‘rotating’
the labels x,y,z. But remember also that the order mat-
ters; if you swap only x and y, for example, that doesn’t
correspond to a pure rotation of the axes in space, but
rather to a reflection in which only two axes are inter-
changed. If you know about vector products, from Book
2 Sections 5.4 and 6.3, you may have noticed that (5.6)
says that τx, τy, τz are the three components of a vector
product:

τ = r × f. (5.7)

This is not a ‘true’ vector. In addition to having an axis
in space, it has a sense of rotation around the axis, like a
screw: it is called a pseudo-vector, but here we use it
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only as a convenient notation for the the three equations
(5.6).

5.2 Angular momentum and

torque

Just as the torque is expressed as the moment of the
force vector f around an axis through the origin, the
moment of any other vector can be defined in a similar
way. If a particle of mass m, at point (x, y), moves with
velocity v and has linear momentum p = mv, then its
moment of momentum, or angular momentum is
defined as (again using the Greek letter λ instead of ‘el’
– which sometimes gets mixed up with ‘1’)

λ = r× p. (5.8)

In terms of components, this means

xpy−ypx = λz, ypz−zpy = λx, zpx−xpz = λy. (5.9)

We know that force produces linear momentum: can it
be that torque produces angular momentum?

To answer this question we write Newton’s second law
in the component form

fx =
dpx

dt
, fy =

dpy

dt
, fz =

dpz

dt
, (5.10)
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and ask if there is a parallel relation between compo-
nents of the torque (τx, τy, τz) and the rates of change of
the three angular momentum components

dλx/dt, dλy/dt, dλz/dt.

In fact, we’d like to know if τx = dλx/dt and similarly
for the other two components.

At first sight this doesn’t look very promising, because
the components of λ in (5.9) contain products of both co-
ordinates and momentum components – and all of them
depend on time. Differentiating might just give us a
mess! But let’s try it, differentiating λx with respect to
the time t:

dλx

dt
=

d

dt
(ypz − zpy) = y

dpz

dt
+ pz

dy

dt
− z

dpy

dt
+ py

dz

dt

But now remember that pz = mvz = m(dz/dt) and
py = mvy = m(dy/dt) and put these values in the line
above. You’ll get, re-arranging the terms,

dλx

dt
= y

dpz

dt
− z

dpy

dt
− py

dz

dt
+ pz

dy

dt
.

The last two terms on the right are−mvyvz and +mvzvy,
respectively, and therefore cancel; while the first two
terms together give yfz−zfy = τx – the middle equation
in (5.6). So we’ve done it: the result we hoped to find,
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and two others like it, are

τx =
dλx

dt
, τy =

dλy

dt
, τz =

dλz

dt
. (5.11)

These results are very similar to Newton’s second law
in the form (5.10): it’s enough to change a force com-
ponent, such as fx, into a torque component (τx); and a
linear momentum component, such as px, into an angu-

lar momentum component (λx) – and you get (5.11).

In Section 4.1, we extended Newton’s second law to a
whole system of particles, however many, and found the
same law applied to a single imaginary particle of mass
M = m1 + m2 + ... , located at a single imaginary

point with position vector R, defined in (4.2). In fact,
F = dP/dt where P is the total linear momentum.

In these last two Sections, however, we’ve been think-
ing about rotational motion, in which a force is applied
to one particle, at point (x, y), as it turns around an
axis through the origin of coordinates. Instead of New-
ton’s law for translational motion, we’ve now obtained
equations (5.11) which describe rotational, or angular,
motion: but they still apply only to a single point mass,
such as a particle moving in an orbit. What we need
now is a corresponding law for whole system of parti-
cles, possibly moving around is centre of mass – which
may be at rest at point R, or may be travelling through
space according to equation (4.7).
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To get the more general equations all we have to do is
add up all the equations for the single particles; and in
doing this we remember that only the external torques
need be included – because every action/reaction pair
will consist of equal and opposite forces with the same
line of action, giving the same equal and opposite mo-
ments about the origin and hence zero contribution to
the total torque. Thus, the equation (dλ/dt) = τ be-
comes, on summing,

dL/dt = T, (5.12)

where the capital letters stand for the sums over all par-
ticles (i) of single-particle contributions: L =

∑

i λ(i)
and T =

∑

i τ(i). The particle label (i) is shown in
parentheses so that it doesn’t get mixed up with the
labels (x, y, z) for coordinate axes. When we remem-
ber that the angular momentum and torque are each
3-component quantities, and that each vector equation
corresponds to three equations for the components, this
all begins to look a bit messy. But equation (5.12) only
says that

dLx

dt
= Tx,

dLy

dt
= Ty,

dLz

dt
= Tz, (5.13)

where

Tx =
∑

τx, Ty =
∑

τy, Tz =
∑

τz, (5.14)
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are total torque components (not showing the particle
label i in the summations) and

Lx =
∑

λx, Ly =
∑

λy, Lz =
∑

λz, (5.15)

are total angular momentum components.

We know that if the vector sum (F) of all the exter-
nal forces applied to a system of particles is zero the
CM of the system will either remain at rest or will
travel through space with constant velocity; but we have
now found that in either case the system may still turn

around the CM, provided the applied forces have a non-
zero torque. The next great principle we need applies to
this rotational motion: it says simply that if the total
torque – or turning force – is zero then the system will
either have no angular momentum or will go on rotating
with constant angular momentum. In that case,

Lx = Ly = Lz = constant. (5.16)

In other words, there is a principle of conservation
of angular momentum, which corresponds to that of
linear momentum for a system on which no external
force acts.

In the next Section we begin to see how important this
principle can be.
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5.3 Another look at the solar

system

In Section 3.4, we were able to find how the Earth moves
around the Sun – using nothing but simple arithmetic
to get an approximate solution of the ‘equation of mo-
tion’, which followed from Newton’s second law. But
the results may have seemed a bit strange: for centuries
people had believed that the path of the Sun, its or-
bit, was a circle; but our results gave an orbit which
was not quite circular. And astronomers knew long ago,
from their observations, that some of the other planets
moved in orbits which were far from circular. Why this
difference?

According to the principle of energy conservation, the
sum of 1

2
mv2 (the kinetic energy) and V (the potential

energy) should give the constant total energy E. When
the force of attraction towards the Sun is given by (1.2),
as F = −GmM/r2 (putting in the minus sign to show
the force is in the negative direction along the vector r),
the PE must be such that F = −(dV/dr) – the rate of
decrease of V with r. Thus V must satisfy the differen-
tial equation

dV

dr
=

GmM

r2
.

The solution is easy to see, because (Book 3, Chapter 3)
the function y = xn has the derivative (dy/dx) = nxn−1
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and thus, for y = r−1, it follows that dy/dr = −r−2.
This does not necessarily mean that V = −GmM × r−1

(which gives the right derivative), because you can add
any constant c and still get the right function F when
you form (dV/dr). What it does mean is that

V = −GmM

r
+ c

is a general solution, whatever the value of c. To choose
c we must agree on a ‘zero of potential energy’ – for what
value of r shall we take V = 0? The usual convention is
to count V as zero when the two masses, m and M , are
an infinite distance apart: this gives at once 0 = 0 + c,
and so c must also be zero. The PE of a planet of mass
m at a distance r from the Sun is therefore chosen as

V = −GmM

r
. (5.17)

The energy conservation equation now requires 1
2
mv2 −

(GmM/r) = constant; but if the orbit is not exactly
circular, so the distance of the Earth from the Sun is
not fixed, the separate terms (KE and PE) cannot both
be constant. When the Earth goes closer to the Sun
(smaller r) its PE must become more negative and its
KE, and velocity, must increase; and when it goes fur-
ther away its PE will become less negative and it will
travel more slowly.
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To understand what’s happening, we need to use the
other great principle: the conservation of angular mo-
mentum, which applies to any orbital motion in the pres-
ence of a central field i.e. a force directed to one fixed
point (in this case the Sun, taken as origin). The cen-
tral force F has zero torque about the origin (see Fig.30,
which lies on its line of action. (Note that F, shown as
the bold arrow in the Figure, lies on top of the position
vector r but has the opposite direction – towards the
Sun.)

•Earth

Sun

F

v

θ

φ

Figure 30

•Earth

Sun

v

r̂
ŝ

θ

Figure 31

The Earth’s angular momentum around the Sun (i.e. its
moment of momentum) must therefore remain constant.
Here we’re thinking of the Earth as a single particle, but
equation (4.23) applies for any number of particles – so
we can keep the same notation even for a one-particle
system, using the symbols L and T instead of λ and τ .
The conservation principle for L may then be written,
with the vector product notation used in (5.8),

L = r×mv = constant = mhn̂ (5.18)
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– a vector of constant magnitude in a direction normal
to the plane of the orbit, written as a unit vector n̂

multiplied by a constant h. In fact, h is the product of
the magnitudes of the vectors r and v multiplied by the
sine of the angle between them: h = rv sin φ, as shown
in Fig.30

The constant h has a simple pictorial meaning. The
base of the shaded triangle in the Figure has a length v,
which is the distance moved by the Earth in unit time;
and the height of the vertex (at the Sun) is the length of
the perpendicular, p = r sin φ. The area of this triangle
is thus Area=1

2
base × height (as we know from simple

geometry, Book 2, Chapter 3). So h = vp = rv sin φ
is just twice the area of the shaded triangle – twice the
area ‘swept out’ by the radius vector r, in unit time, as
the Earth makes its journey round the Sun.

We say that h is twice the areal velocity; and what we
have discovered is that the areal velocity is a constant
of the motion for the Earth and all the other planets
as they move around the Sun.

This important result was first stated four hundred years
ago by Kepler, on the basis of astronomical observations,
and is usually called “Kepler’s second law”. His “first
law”, published at the same time, stated that the orbit
of any planet was an ellipse, not a circle, and his “third
law” concerned the period of the planet – the time it
takes to go round the Sun. Of course, Kepler didn’t
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have Newton’s laws to guide him, so his discoveries were
purely experimental. Much later, in fact, Newton used
Kepler’s observations to show that the force of attraction
between two bodies must be given by an equation of
the form (1.2), an inverse square law. The interplay
of experiment and theory is what leads to continuous
progress in Physics and makes it so exciting; you never
know what’s coming when you turn the next corner!

5.4 Kepler’s laws

From the two principles we have – conservation of energy
and conservation of angular momentum – we can now
get all the rest! First we note that the velocity v, being
a vector, can be written as the sum of two perpendicular
components. There will be a radial component, along
the direction of the unit vector r̂ (shown in Fig.31), and
a transverse component, in the transverse direction ŝ.
As r sweeps out the shaded area in Fig.30, both r̂ and
ŝ will change. In a small increase of the angle θ, call it
dθ, the tip of the (unit-length) arrow representing r̂ will
move through dθ in the transverse direction. And if this
change takes place in a small time interval dt the rate of
change of r̂, as it rotates, will thus be (dθ/dt)̂s. The rate
of increase of the angle θ, with time, is the modulus of
the angular velocity and the corresponding increase in

117



the unit vector r̂ is written dr̂/dt = (dθ/dt)̂s. If you next
think about the way ŝ changes (look again at Fig.31),
you’ll see the length of the unit vector changes by the
same amount – but in the negative direction of r! These
two important results together can now be written, de-
noting the angular velocity by dθ/dt = ω,

dr̂

dt
= ωŝ,

dŝ

dt
= −ωr̂. (5.19)

Notice that the two rates of change are written with
the notation of the differential calculus; but each is
the derivative of a vector, with repect to time, and
although the time is a scalar quantity (measured by a
single number t) the vectors r̂ and ŝ are not. The vectors
change with time and are said to be “functions of a scalar
parameter” t. But the definition of the time derivative
of a vector is parallel to that of any scalar quantity y =
f(t): just as (dy/dt) is the limiting value of the ratio
δy/δt, when the changes are taken smaller and smaller,
so is dv/dt the limiting value of the change δv divided
by the number δt. Notice also that the magnitude of the
angular momentum vector, |L| = h in (5.18) is simply a
multiple of the angular velocity ω:

L = r×mv = hn̂, |L| = h = mrv = mr(rω) = mr2ω.
(5.20)

We’re now ready to find the two missing laws.
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Kepler’s first law

The first law states that the orbits of all the planets
in the solar system are ellipses. An ellipse is shown in
Fig.32: it is the figure you get if you knock two pegs
into the ground and walk around them with a ‘marker’,
tied to a long loop of string passing over the pegs and
kept tightly stretched, as in the Figure. If O1 and O2

are the positions of the pegs, and M is the position of
the marker, then the loop of string (constant in length)
makes the triangle O1MO2. The points O1 and O2 are
called the foci of the ellipse; and Kepler noted that, for
all the planets, the Sun was always to be found at one of
the foci. If the two foci come together, to make a single
focus, the orbit becomes a circle.

Sun
•

O1•O2

•M

P0P2

P1

P3

•C
a

b

θ

•Earth

Figure 32

(Note. The proof that follows is quite difficult! Don’t worry

about the details – you can come back to them when you’re

ready – but look at the equation (5.25), which will tell you

how to calculate the ellipse.)
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To show that the orbit is, in general, an ellipse we start
from the fact that the angular momentum (5.20) is a
constant of the motion, while the Earth still moves ac-
cording to Newton’s second law ma = F. The acceler-
ation is the rate of change of the velocity vector with
time; and such a rate of change is often indicated just
by putting a dot over the symbol for the vector. With
this shorthand, a = v̇ and similarly ṙ will mean dr/dt.
In the same way, two dots will mean differentiate twice:
so a = v̇ = r̈ = d2r/dt2.

From (5.19) the velocity vector can be written in terms
of its radial and transverse components, in the directions
of unit vectors r̂ and ŝ. Thus

v =
d

dt
(rr̂) =

dr

dt
r̂ + r

dr̂

dt
= ṙr̂ + rθ̇ŝ. (5.21)

– using (4.30) and the rule (Book 3, Section 2.4) for dif-
ferentiating a product of two factors. On differentiating
again and using (5.19),

a = v̇ =

(

d2r

dt2
r̂

)

+

(

dr

dt
ωŝ

)

+

(

d(rω)

dt

)

ŝ + (rω)(−ωr̂).

(5.22)
At the same time, by (1.2), the force vector is F =
−(GmM/r2)̂r.

Newton’s second law (mass × acceleration = force) then
equates two vectors, ma and F, both lying in the plane of
the orbit – whose normal is the constant vector L = hn̂,
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according to (5.20). Now let’s take the vector product of
both sides of the equation with L = hn̂. Why? Because
we know the motion must be in the plane and the vectors
must therefore have no normal components: taking the
vector product of the equation with n̂ will simply ‘kill’
any components normal to the plane because the vector
product of a vector with itself is zero! The in-plane

components, which we want, will be obtained by solving
the equation that remains; and this becomes ma×hn̂ =
−(GmM/r2)̂r× hn̂. But

ma× hn̂ = m
d

dt
(v × hn̂)

while, using L(= r × v) in place of hn̂,

−(GmM/r2)̂r × hn̂ =

−(GmM/r2)̂r × (r2ω)n̂ = −(GmM)ωŝ,

since the three unit vectors r̂, ŝ and n̂ form a right-
handed basis with r̂ × ŝ = n̂, ŝ× n̂ = r̂, n̂× r̂ = ŝ. (Look
back at Book 2, Section 5.4, if you’re not sure about
vector products.)

On taking away a common factor m, and remembering
that dr̂/dt = ωŝ, the equation of motion can be written

d

dt
(v × hn̂) = GM

dr̂

dt
=

d

dt
(GM r̂).

But if the derivatives of two vector quantities are equal
the quantities themselves can differ only by a constant
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vector, call it eâ – a numerical multiple of the unit vector
â, which fixes a direction in space. We can therefore
write

(v × hn̂)/(GM) = r̂ + eâ. (5.23)

Now let θ be the angle between the position vector r

and the constant vector a; and take the scalar product
of the last equation with r. The result will be, putting
the right-hand side first,

r + er cos θ = r · (v × hṅ)/(GM). (5.24)

The final step depends on the result (Book 2, Section
6.4) that in a ‘triple-product’, like that on the right, the
order of the ‘dot’ and the ‘cross’ can be interchanged; so
the last equation can be re-written in the standard form

r(1+ e cos θ) = (r× v) ·h×n)/(GM) = h2/GM. (5.25)

There are two numerical parameters in this equation: e
is called the eccentricity and determines whether the
ellipse (Fig.32) is long and thin, or shorter and ‘fatter’;
the other, h2/GM , gives half the ‘length’ of the ellipse,
the value of a in the Figure. Suppose we are told the
values of these parameters. Then any pair of values of
the variables r and θ that satisfy equation (5.25) will
fix a point on the ellipse (see Exercise xxx). By starting
with θ = 0 and increasing its value in steps of, say,
45 degrees, calculating corresponding values of r from
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(5.25), you’ll find a series of points P(r, θ) (like P0, P1,
P2, P3 in Fig.32) which fall on the ellipse.

We can find the value of a (which is called the “length of
the semi-major axis”) from the values of r at points
P0 and P2: they are easily seen to be r0 = l/(1 + e) and
r2 = l/(1 − e), from which it follows that a = l/(1 −
e2). (Check it yourself!) With a bit more geometry (see
Exercise xxx) you can find the length of the other axis:
b in Fig.32 is the semi-minor axis. To summarize, the
length and width of the ellipse are determined as 2a and
2b, with

a =
l

1− e2
, b =

l√
1− e2

. (5.26)

Knowing all this about the ellipse, we can come back to
the last of Kepler’s famous laws.

Kepler’s third law

The third law answers the question: How long does it
take a planet to complete its journey round the Sun?
This time (T ) is called the period: the period of the
Earth is about 365 days, while that of the moon as it
goes around the Earth is about 28 days. The orbits
of the planets are all ellipses, even though their masses
(m) may be very different, because equation (5.25) does
not contain m: they differ only in having different val-
ues of the parameters l = h/GM and e – and these are
fixed once we know one point P on the orbit, along with
the corresponding velocity vector. We take the parame-
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ter values as ‘given’ because they must have been fixed
millions of years ago, when the solar system was being
formed, and they change very very slowly as time passes.
What Kepler wanted to do was to find a rule relating
T to the form of the orbit. And, as a result of careful
measurements, he found that, for all the known planets,
the square of the period is proportional to the cube of the

long axis of the orbit ; in other words T 2 ∝ a3.

Now that we know the forms of the orbits, we should be
able to prove that Kepler’s third law will correctly de-
scribe how the length of the year, for any of the planets,
varies with the half-length (a) of the orbit.

First let’s remember that, from (5.18) and the paragraph
that follows it, h is twice the areal velocity of the planet
(the shaded area in Fig.30, which is swept out in unit
time by the vector r): so if we know the area of the whole
ellipse we can simply divide it by 1

2
h and that will give

us the number of time units taken to sweep over the
whole area.

You may think the area of an ellipse will be hard to find:
but it’s not. You known from Book 2 that the area of
a circle is πr2; and an ellipse is only a ‘squashed’ circle.
Think of a circle of radius a and imagine it cut into
thin horizontal strips of width d, so that n× d = a. To
squash the circle you simply squash every strip, so that
the width is reduced to d′, without changing the number
of strips or their lengths. When nd′ = b you’ll have an
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ellipse of half-length a and half-width b, as in Fig.32.
And because every strip has been reduced in area (i.e.
width×length) by a factor b/a, the same factor will give
the change in the whole area: the area πa2 for the circle
will become πa2 × (b/a) for the ellipse. Thus,

area of an ellipse = πab (a = halflength, b = halfwidth).
(5.27)

On dividing the whole area of the orbit by the amount
swept over in unit time (1

2
h) we get the number of time

units needed to complete the whole orbit:

T =
πab
1
2
h

=
2πab√
GMl

,

where we have used the definition of the parameter l,
namely l = h2/(GM), just after equation (5.25).

That’s all right: but we can’t get l just by looking at
the sky! On the other hand we can observe the length
and width of an orbit; and from (5.26) we can get l in
terms of a and b. Thus

b2

a
=

(

l2

1− e2

)(

1− e2

l

)

= l. (5.28)

And now, by substituting this value in the equation for
the period T , we find

T =
2πab√
GM

√
a

b
=

(

2π

GM

)

a3/2. (5.29)
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This is Kepler’s third law. In words, it states that the
square of the period of a planet is proportional to the
cube of the half-length of its orbit. But now this result
has been proved, from Newton’s laws, and we have ob-
tained the actual value of the proportionality constant:
it is 2π/(GM) and depends only on the mass of the Sun,
which is the same for all planets in the solar system, and
the gravitational constant G, which we can find for our-
selves by measuring the force of attraction between two
heavy bodies in the laboratory – here on Earth! An-
other thing – our Sun has been in the sky for a long
time (about 5000 million years is the estimated age of
the solar system) and the Sun’s mass M is slowly chang-
ing, because it burns up fuel in producing sunshine. As
M gets smaller, the orbit’s half-length a gets bigger and
so does the period T : the planet spends longer far away
from the Sun and takes longer to go round it. And it’s
the same for all the planets: it may be another 5000 mil-
lion years before the Sun uses up all its fuel and the solar
system dies – but, when it does, we’ll all go together!

Exercises (in preparation)
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Chapter 6

Dynamics and statics
of rigid bodies

6.1 What is a rigid body?

We’ve spent a long time in space – thinking about the
planets moving around the Sun, as if each one was a sin-
gle particle, moving independently of the others. Now
we’ll come back to Earth and to systems of many parti-
cles, not moving freely but all joined together, somehow,
to make a rigid structure. A simple example was studied
in Section 4.1, where Fig.26a showed three massive par-
ticles joined by light sticks (so light that we could forget
they had any weight): the sticks are needed only to keep
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the distances between all pairs of particles fixed. The
fact that the distances between all the mass points stay
fixed, even when they may be moving, is what makes
the structure rigid. The structure shown in Fig.26a lies
in a plane – it is flat – but all our arguments about in-
ternal and external forces, actions and reactions, and so
on are unchanged if there are many particles and they
are not all in one plane. All we must do is use three
coordinates for every mass point and three components
for every vector (force, velocity, etc.). So what we did
in Section 4.1 was very general.

This model of a rigid structure can be extended to rigid
bodies in which there may be millions of particles – all
so close together that no space (almost) is left between
them. If you cut out, from a flat sheet of metal, a shape
like that in Fig.26a, you will get a plane triangular lam-
ina, or plate: think of this as made up from an enormous
number of tiny bits of metal, all joined together so that
the distance between any two bits doesn’t change as the
lamina moves. You then have a rigid body in the form
of a lamina. And we don’t have to ask about how the
bits are joined together because (as we saw) Newton’s
third law tells us that actions and reactions always come
in equal pairs – and that’s enough! If we number all the
particles and suppose there is a bit of stuff with mass
m1 at the point with coordinates (x1, y1), one with mass
m2 at (x2, y2), and so on, then we can define things like

128



the coordinates of the centre of mass just as we did in
Section 4.1. The total mass of the body (M , say) will be
given by (4.1) and the position vector (R) of the centre of
mass will follow from (4.3). Let’s repeat the equations:

M = m1 + m2 + m3 + ... (6.1)

is the mass of the whole body, while the centre of mass,
or centroid, is at the point

R =
m1r1 + m2r2 + m3r3 + ...

m1 + m2 + m3 + ...
=

Σimiri

Σimi
. (6.2)

The coordinates (X, Y, Z) of the centroid (components
of R) are given by

X =
m1x1 + m2x2 + m3x3 + ...

m1 + m2 + m3 + ...
=

Σimixi

Σimi

, (6.3)

with similar equations for Y and Z.

In a real ‘rigid body’, made out of some continuous ma-
terial like metal or hard plastic, there will be too many
particles to count – an infinite number. But we can
imagine the body cut into small pieces, each one being
given a number, and go ahead in the same way using
this ‘model’ of the continuous body. If you’ve studied
the Calculus (in Book 3) you’ll be able to guess how the
equations need to be changed. Suppose, for example,
you have a long iron bar and want to find its CM. Mea-
sure distances along the x-axis, so that the ends of the
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bar are at x = 0 and x = L; and suppose every unit of
length has a mass md, which is called the mass-density
– just the mass per unit length. Then a piece of the bar
between points x and x + dx, with length dx, will have
a mass md(x)dx, where in general md may depend on
position and so is written as a function of x. The total
mass of the bar will be the sum of the masses of all the
bits, in the limit where the bits get smaller and smaller
but you have infinitely many of them. This is something
you’ve met in calculus; and the limit of the sum in an
equation like M =

∑

i mi is written

M =

∫ L

0

md(x)dx,

which is a definite integral taken between x = 0 and
x = L, the two ends of the bar. In the Exercises at the
end of the Chapter, we’ll see how such integrals can be
evaluated, but for the moment we’ll just suppose it can
be done.

6.2 Rigid bodies in motion:

Dynamics

To get some ‘feeling’ for what happens when a rigid
object moves through space, we can start with a very
simple system, thinking first of just two masses (m1, m2)

130



at the two ends of a light stick (Fig.33a). We’ll call it
a “stick-object”. In this case, measuring distances (x)
from the position of mass m1, so that x1 = 0, x2 = l (the
length of the stick), the centroid will have x-coordinate

xc =
m1 × 0 + m2 × l

m1 + m2

=
m2l

m1 + m2

– where we use xc instead of X, because this is the
distance from m1, a point fixed in the body, not one
of the coordinates (X, Y, Z) of the centroid as it moves
through space. The centroid is indicated in Fig.33a by
the ‘bullet’ •, for the case where the first mass is twice as
heavy as the second: m1/m2 = 2, which gives xc = l/3
– one third of the way along the stick.

If you now throw the stick-object into the air it will
move as if all its mass is concentrated at the centroid,
whose coordinates X, Y, Z will change with time. But as
the centroid moves the stick will also rotate. As soon as
you let go of the stick it will move under the influence of
gravity; and, as we know form Section 3.2, the centroid
(moving like a single particle) will follow a parabola.
Fig.33b shows where the centroid has got to after some
time t; and also shows how the stick might have rotated
during that time.
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What can we say about the rotational motion? The
details will depend on how the object is thrown, on the
force we apply before letting go. And, to be simple, we’ll
suppose the force (F in Fig.33a), which is an impulsive

force, is applied to m1 in the vertical plane – so that
the rotating stick always stays in the vertical plane and
we need only think about x- and y-components of the
forces acting. The stick, after it leaves your hand, will
go on rotating about a horizontal axis through the CM;
and the only forces acting on it will be f1, f2, as shown
in Fig.33b. How will they change its rotational motion?

In Section 4.4 we discovered a very general principle:
that angular momentum is conserved, according to (5.12),
when no torque is acting on a system; so we need to know
how much torque (if any) is produced by the forces f1, f2.
Remember we’re thinking of the torque (the moment of
the forces) around the centre of mass and that each mo-
ment can be written nicely as a vector product (5.7).
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Thus

T = τ1 + τ2 = r1 × f1 + r2 × f2, (6.4)

where all distances are measured from the CM; so ri
is the position vector of mass mi relative to the mass

centre. If we use this reference frame to calculate the
position of the centroid, using (4.2), it must of course
come out as R = 0 because we’re there already! In other
words,

(Σimi)R = Σi(miri) = 0.

Now look at the total torque in (6.4), putting fi = migf̂,
where f̂ is a unit vector pointing vertically downwards:
it can be written

T =
∑

i

τi =
∑

i

ri × (mig)̂f =

(

∑

i

miri

)

× gf = 0,

(6.5)
– since we have just seen that

∑

i miri = 0, and if a vec-
tor is zero then so is its product with any other vector.

We’ve shown that the torque around the centroid of any
object, due to gravity, is zero – that there is no resultant
turning force that would produce a rotation. This is one
of the most important properties of the centre of mass
and is the reason why the CM or centroid used to be
called the “centre of gravity”. We know from Chapter
4, Exercise (xxx) that the CM of a uniform bar is at
its midpoint, so if we hang it from that point there will
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be no turning force to make it tip over to one side or
the other. Similarly If you support the stick-object in
Fig.33a at one point only, directly below the CM (•), it
will stay horizontal as long as F = 0 even though one of
the weights at its two ends is twice as big as the other;
and we say it is “in balance”. There’s more about the
principle of the balance in the next Chapter, where we
talk about making weighing machines.

But now we’re talking about the motion of the stick-
object when it is thrown in the air. When it is in free
flight (Fig.33b) there is no applied torque and according
to (5.12) the angular momentum L must stay constant
with the value you gave it before letting go. So the
stick-object will go on rotating, around a horizontal axis
through the CM, as it makes its journey through space.
That’s all supposing you threw the stick ‘straight’, so
the motion started off in the vertical plane, with the axis
horizontal: otherwise the stick would ‘wobble’, with the
rotation axis continually changing direction, and that
gives you a much more difficult problem. So for the rest
of this Section we’ll think only about rotation of a body
around an axis in a fixed direction.

Motion around a fixed axis is very important in many
kinds of machinery and it’s fairly easy to deal with. But
it still seems that angular motion is very different from
motion through space. We know that Newton’s second
law applies directly to a rigid body, the total applied
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force F giving a rate of change of linear momentum P

according to (4.7), namely F = (dP/dt) = M(dV/dt) –
just as if the total mass was all at the CM and moved
with linear velocity V. But for the rotational motion
we have instead T = (dL/dt) and there seems to be
no similar last step, relating L to the angular velocity
ω. Wouldn’t it be nice if we could find something like
(5.12) in the form

T =
dL

dt
= I

dω

dt
,

where ω is the angular velocity produced by the torque
L and I is a new sort of ‘proportionality constant’? To
show that this is possible we only need to express L

in terms of the angular momentum vectors for all the
separate particles that make up the body.

Remember that L is a vector (of a special kind) and is
simply a sum of one-particle terms λi, given in (5.8) with
components in (5.9). We want to find L in the easiest
possible way, so let’s take the axis of rotation as the z-
axis and evaluate λz, given in (5.9), for the particle with
mass mi. But haven’t we done this already? In talking
about the Earth (with mass m) going around the Sun
we wrote the angular momentum as

r × p = r× (mv) = mrv sin φ

where r was the vector distance from the axis (through
the Sun and normal to the plane of the orbit) to the
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point with coordinates x, y; and φ was the angle be-
tween the vectors r and v. It’s just the same here: the
z-component of λ will be λz = mrv because this is a
rigid body, with r =

√

x2 + y2 (fixed) and v perpendic-
ular to the position vector r. We can also introduce the
angular velocity, as we did in (5.20), because v = rω
and therefore

λz = mrv = mr(rω) = m(x2 + y2)ω. (6.6)

To get the total angular momentum we simply take one
such term for every particle (of mass mi at point (xi, yi)
– zi not appearing) and add them all together. The total
angular momentum around the axis of rotation is then

Lz =
∑

λz =
∑

i

mi(x
2
i + y2

i )ω = Izω, (6.7)

where Iz is a property of the rotating body, evaluated
for a given axis (in this case called the z-axis) from the
formula

Iz =
∑

i

mi(x
2
i + y2

i ) =
∑

i

mir
2
i , (6.8)

where r2
i is simply the square of the distance of the mass

mi from the given rotation axis. Iz is called the mo-
ment nof inertia around the z-axis.

Note that the moment of inertia of an object is not de-
termined once and for all time – like the mass – just
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by weighing it: it depends on the shape of the object,
the masses of all its parts and where they are placed,
and on what axis you choose. If you have an egg-shaped
object, for example, there will be different moments of
inertia for spinning it around its long axis and a short,
transverse, axis. For a three-dimensional object there
are three of them, all calculated in the same way, called
principal moments of inertia; and often the princi-
pal axes are ‘axes of symmetry’ (see Chapter 6 of Book
1) around which you can rotate the object without mak-
ing any change in the way it looks (as in the case of the
egg – where any transverse axis gives the same value of
the moment, so there are only two different principal
values). All this will be clear when you try to calculate
a moment of inertia, as in some of the Exercises at the
end of the Chapter. But let’s start things off with an
example –

An Example A bicycle wheel spinning around its axis

Imagine the wheel in a horizontal plane, with its axis
vertical. From above it will look like Fig.34a, below; or,
if you add masses (•) on the rim, like 34b. The masses
on the rim won’t apply any torque to the wheel, because
each mass will feel only a downward force mg, parallel
to the axis, with zero torque around the axis); but they
will make a difference. You can spin the wheel, in either
case, by applying a horizontal force F to the rim. The
magnitude of the applied torque is then T = F × R,
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where R is the radius of the wheel.

F

Figure 34a

F

Figure 34b

To say what will happen to the wheel, when you apply
the force F, you need to know its moment of inertia I.
That’s easy: you just use (6.8). If any bit of the rim has
mass ∆M it will contribute R2 × ∆M to the moment
of inertia about the axis; and since all the bits are the
same distance from the axis the total moment of inertia
for the whole wheel will be I0 = R2M (forgetting about
the wire spokes, which are very light). If you apply the
force F for a short time the wheel will start spinning
about its axis.

But after adding the masses, as in Fig.34b, the wheel
will not start spinning so easily – it will have much more
inertia. If each lump of stuff has a mass m, and there
are 18 of them, the loaded wheel will have a moment of
inertia I = I0+18R2m. You’ll now have to apply a much
larger torque, and perhaps for a longer time, to get the
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wheel moving (i.e. to increase its angular momentum) –
as follows from equation (5.12). And once you’ve got the
wheel moving it will be much harder to slow it down –
as you’ll discover it you put a stick between the spokes!

One last thing about rotational motion of a body around
a fixed axis: since every bit of mass is moving, because it
has an angular velocity, as well as the velocity due to its
translation through space, it will have a kinetic energy.
Just as the kinetic energy of translation is 1

2
MV 2, we

might expect something similar for the rotational kinetic
energy, but with an angular velocity ω in place of the
velocity V of the CM and a moment of inertia I in place
of the total mass M . And that’s exactly what we find.

To get the kinetic energy of rotation we can use the same
method as in getting the angular momentum (moment
of momentum) around the axis (the ‘z-axis’). Every
element of mass mi is moving with a linear velocity vi =
riω, where ω has the same value for all points in the
body, and therefore has a kinetic energy

1
2
miv

2
i = 1

2
mir

2
i ω

2.

If we add all contributions, remembering that ω is the
same for all of them, the result will be

Trot = 1
2
Izω

2, (6.9)

where Iz is the moment of inertia as defined in (6.8).
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Even when the axis of rotation is not fixed, but is free
to turn and twist in any direction about one fixed point,
a similar calculation can be made (though it is much
harder). And even when the body is completely free
and has no point fixed in space the total kinetic energy
can be written as

T = Ttrans + Trot, (6.10)

where Ttrans is the KE of the total mass M , as if it
were concentrated at the CM and moving with velocity
V , while Trot is the extra KE due to rotational motion
of all elements relative to the CM, as if it were fixed.
So the ‘separation’ of the motion of a rigid body into
translational and rotational parts is very general indeed
– even though it’s all in our minds, to help us to think
and to calculate!

6.3 Rigid bodies at rest: Statics

In Chapter 1, when we first started to talk about forces
acting on a particle, we were mainly interested in equi-

librium – where the forces were ‘in balance’ and didn’t
produce any motion. And we noted that Statics and
Dynamics were the two main branches of the Science of
Mechanics. Since then, we’ve nearly always been study-
ing bodies in motion (i.e. Dynamics). Whatever hap-
pened to Statics, which is what most books do first? We
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did it that way because Statics is only a ‘special case’ of
Dynamics, in which the bodies move with zero velocity!
So once you’ve done Dynamics you can go straight to
Statics without having to learn anything new. You only
need ask for the conditions under which all velocities are
zero - and stay zero.

These conditions follow from the two equations (4.7) and
(5.12) which state, respectively, that (i) force produces
linear momentum (and hence translational motion), and
(ii) torque produces angular momentum (and hence ro-
tational motion). The conditions for no motion at all –
for equilibium – can therefore be stated as

F =
∑

f = 0 (6.11)

– the vector sum of all the forces acting on the body
must vanish – and

T =
∑

r× f = 0 (6.12)

– the vector sum of all the torques acting on the body
must also vanish. Here the terms have not been labelled,
but it is understood that, for example,

∑

r × f means
r1 × f1 + r2 × f2 + ... , where force fi is applied at the
point with position vector ri and the sum runs over all
particles (i = 1, 2, 3, ... ) in the body. If these two condi-
tions are satisfied at any given time, then the forces will
produce no changes and the conditions will be satisfied
permanently, the body will stay in equiibrium.
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So far, we have supposed that the torque refers to any
axis through the centre of mass O. This was important
in Dynamics; but in Statics there is no need to use the
CM. If we take a new origin O′, with position vector R

relative to the CM, the position vector of any point P
will become r′ = r − R, instead of r. (If you’re not sure
about this make a diagram with dots at points O, O′, P
and draw the arrows R (from O to O′), r (from O to P),
and r′ (from O′ to P): you’ll see that r′ is the vector sum
of r and −R). The torque about an axis through O′ and
perpendicular to the plane of the vectors r, R, will then
be

T′ =
∑

r′×f =
∑

(r−R)×f =
∑

r×f−R×(
∑

f) = T,

as follows from (6.12). In statics, you can take moments
about just any old point and the equilibrium condition
T′ = T = 0 is always the same!

Since the total force F and the total torque T are both
3-component quantities, and will only vanish if all their
components are separately zero, the vector equations
(6.11) and (6.12) are equivalent to two sets of ordinary
(scalar) equations:

Fx = 0, Fy = 0, Fz = 0 (6.13)
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and, for the torque components,

Tx = yFz − zFy = 0,

Ty = zFx − xFz = 0,

Tz = xFy − yFx = 0. (6.14)

Here, as usual, we use Cartesian coordinates, where the
x-, y-, and z-axes are all perpendicular to each other.
Remember that the order of the labels (x, y, z) in each
of the torque equations is cyclic – in the first equa-
tion, the x-component (on the left) depends on y- and
z-components (on the right), while in the second you
replace xyz by yzx and similarly in the third you again
move the first letter to the end (yzx → zxy).

In the Examples, we’ll see how these six scalar equations
can be solved to find the kinds of equilibrium that can
result.

Example 1 - a loaded bench

The Figure below represents a wooden plank, of weight
w, supported at two points, P1 and P2.

•
w

f1
P1

f2
P2

Figure 35
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We can also add a number of loads (e.g. people sitting),
of weights w1, w2, ... , say, at distances x1, x2, ... to right
or left of the midpoint •. When the system is in equi-
librium, what will be the values (in kg wt) of f1, f2, the
upward forces exerted by the two supports?

As we know already, the force on the plank due to grav-
ity can be represented by a vector of length w pointing
vertically down from its midpoint.

Two other forces, with their points of application, are
also shown in the Figure. Notice that any two forces
with the same line of action are exactly equivalent: the
point of application doesn’t matter – you can slide the
force along the line without changing its effect (its mo-
ment around any point stays the same). This is some-
times called the “principle of transmissibility of force”.
So the up-arrows f1 and f2 are drawn as if the forces are
applied at the top surface of the bench, while w starts
from the underneath surface (not the CM, which is in-
side): this just makes the drawing clearer,

Let’s now write down the two conditions, (6.12) for zero
total force and (6.13) for zero torque. The first means
(taking x-axis left-right along the bench, y-axis verti-
cally upwards, and z-axis pointing towards you out of
the paper)

f1 + f2 − w = 0. (A)

There is only one equation, for the force components in
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the y-direction. The x- and z-components are zero.

The second condition (6.13) also gives only one equation
(can you say why?), where the support-points, P1 and
P2, are at x = ∓X, relative to the mid-point as origin.
This is (noting that w has zero moment about the origin)

−Xf1 + Xf2 = 0, (B)

which means −f1 + f2 = 0. To solve these two simulta-

neous equations (see Book 1) we first add them together,
from which it follows that 2f2 − w = 0. So f2 = 1

2
w.

The second unknown is found by putting this result back
in the first equation: f1 + 1

2
w − w = 0 and therefore

f1 = 1
2
w = f2. As we’d expect, each support carries just

half the weight of the bench.

Remember that the zero-torque condition applies for any

choice of axes, when we calculate the moments. So we
can check our results by taking moments around, say,
an axis through point P1. Again, the forces give only z-
components of torque, but now instead of equation (B)
we find

2Xf2 −Xw = 0,

since f1 has zero moment about the new axis, while w

has a negative (clockwise) moment. Thus, f2 = 1
2
w and

you get the same result as before.

It’s more interesting to ask what happens if a heavy
person, of weight W , sits on the bench, with his CM
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at a distance x from the mid-point. In this case the
conditions (A) and (B) are changed: they become

f1 + f2 − w −W = 0, (A)

for zero vertical force, and

−Xf1 + Xf2 + xW = 0, (B)

for zero torque about the z-axis through the origin. Sup-
pose now the person weighs four times as much as the
bench, so W = 4w, and sits down half way between the
left-hand support (P1) and the middle. In that case,
x = 1

2
X and the new equations are

f1 + f2 = 5w, (A) and −Xf1 + Xf2 = −2Xw. (B)

Again, the two equations can be solved to give the values
of the two unknowns, f1, f2. Cancelling a common factor
X from (B) and adding the result to (A), gives 2f2 = 3w
so f2 = (3/2)w; and if we put this result back in (A) we
get f1 = 5w − (3/2)w = (7/2)w.

That’s the complete solution: the right-hand support
carries three times the weight it carried before the per-
son sat down, while the left-hand support carries seven

times as much. Things like this are going to be very
important if you ever have to build a bridge, with heavy
trucks running over it. You’ll want to know how strong
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the supports must be and how many of them will be
needed.

Example 2 - a lifting device

The Figure below shows a device for moving heavy loads.

•
W

T2 = w

T1T1

w

R

Figure 36

The load hangs from a beam (shown shaded grey), car-
ried by a strong wire cable. At the start, the load will lie
on the ground; but the beam can be pulled into a more
vertical position by a second wire cable, which passes
over a smooth bar and can be wound round a drum
(shown as a circle on the left). What you’ll want to
know are the tensions T1 and T2 in the two cables; and
also the reaction R of the ground – which acts against
the pressure applied to it by the beam. So there are
three unknowns, one of which is a vector (and we don’t
even know which way it points).

In the Figure, the load has been lifted clear of the ground
and the beam is in equilibrium when all the forces act-
ing on it satisfy the conditions (6.12) and (6.13). First
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we have to say exactly what they are. As you’ll remem-
ber from Chapter 1, the tension in a string or cable is
the same at all points: there are two forces, equal but
acting in opposite directions. We’ll usually just show
the magnitude of the tension, without putting in all the
arrows. T1 is produced by the winding machine, T2 by
the weight it has to support.

As usual, we’ll resolve all forces into horizontal and verti-
cal components, so that T1 acting on the beam will have
components Th (pointing to the left) and Tv (pointing
vertically upwards). Similarly R will have components
Rh (pointing to the right) and Rv (pointing directly up-
wards). The other forces are vertical – the weight W
of the beam and the tension T1, which has the same
magnitude as the weight w it supports.

For equilibrium, the total horizontal force on the beam
must be zero and so must the total vertical force. So we
can write the conditions on the magnitudes of the forces
as

(a) : Rh − Th = 0, (b) : Rv + Tv −W − w = 0.

Now take moments about a horizontal axis through the
top end of the beam (which, we’ll suppose, has length
L and makes an angle θ with the ground). Counting
anticlockwise torques as positive, this gives a third con-
dition:

(c) : −Rv(L cos θ) + Rh(L sin θ) + W (1
2
L cos θ)
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= Tv(D cos φ)a + Th(D sin φ),

where φ is the angle that the ‘lifting’ cable makes with
the horizontal.

Now let’s put in some numerical values, taking

L = 4 m, w = 20 kg, W = 40 kg,

θ = 30◦, D = L/4 = 1 m

– D being the distance from the top end of the beam to
the point where the ‘lifting’ cable is attached. (To make
the arithmetic easier, we’ll choose the height of the wall
so that φ = θ, but if you have a pocket calculator you
can use other values.) The three conditions then become

(a) : Rh − Th = 0, (b) : Rv + Tv = 60 kg wt,

and, for zero torque around a horizontal axis (pointing
towards you out of the plane of the Figure),

(c) : − Rv(4 cos 30◦) + Rh(4 sin 30◦) + W (2 cos 30◦)

= Tv(3/2) cos 30◦ + Th(3/2) sin 30◦.

There are then four things we don’t know, two com-
ponents of the reaction R and two components of the
tension T1, which is a vector – even though we’ve only
used its magnitude T1 = |T1|. And there’s a golden rule
that to find n ‘unknowns’ you must have n independent
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conditions. We have only three – so something is miss-
ing. We must find another equation. What can it be?

You’ll remember, from Chapter 1, that a string or ca-
ble can’t apply a ‘push’. It can only feel a tension –
and this force can only be along the string. But here we
have resolved the force (the vector T1) into two compo-
nents, one (horizontal) of magnitude Th = T cos θ, the
other (vertical) of magnitude Tv = T sin θ; and we were
hoping to solve our equations as if the two components
were independent. In fact, they are not: the ratio Tv/Th

is fixed by the direction of the string – so here is our
missing equation. It is

(d) :
Tv

Th
=

T sin θ

T cos θ
= tan θ = tan 30◦.

And now we can solve the four equations (a),(b),(c), and
(d).

(Remember that the sine, cosine and tangent of 30◦ can
be obtained from an equilateral triangle, all angles being
60◦. Take each side of length 2 units and drop a per-
pendicular from one corner to the opposite side: each
half of the triangle then has one angle of 90◦ and sides
of lengths 1,2 and

√
3 units. If you draw it, you’ll see

that sin 30◦ = 1
2
, cos 30◦ = 1

2

√
3, and tan 60◦ = 1/

√
3.)

On putting in the numerical values and dividing all
terms by 4 cos 30◦ equation (c) becomes

−Rv + Rh(1/
√

3)− Tv(1/4)− Th(1/4
√

3) = −20 kg wt.
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But from (a) Rh = Th and from (d) Tv = Th/
√

3; so on
putting these values in the last equation above we get
(check it!)

−Rv + (1/2
√

3)Th = −20 kg wt.

We’re nearly there! Equation (b) told us that Rv +Tv =
60kg wt, which is the same as Rv + (

√
3)Th = 60 kg wt.

If you add this to the last equation above, you get rid
of one unknown, Rv, which cancels out. So you are left
with

(3/2
√

3)Th = 40 kg wt, or Th = (80/
√

3) kg wt.

That’s the first result. The next follows at once because
(a) told us that Rh = Th. And we know from (d) that
Tv = Th/

√
3. So Tv = (80/3) kg wt. Finally, putting

the values of Rv and Tv into (b), we get Rv = (60 −
80/3) kg wt = (100/3) kg wt. And we’re done!

Notice that the units (the metre and the kilogram weight)
have been kept throughout, but if your equations are
right you can safely leave out the units – they will ‘look
after themselves’. We kept them in just to make sure
that everything was OK: the numbers that come out at
the end are

Rh = 46.189, Rv = 33.333, Th = 46.189, Tv = 26.667

and as they all refer to forces they are correctly measured
in ‘kg wt’. The magnitude of the tension in the cable
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is also important and comes out as T =
√

T 2
h + T 2

v =
80(2/3) = 53.333 – again in ‘kg wt’.

Example 3 - equilibrium with friction

Sometimes we’ve talked about strings going over smooth

pegs and things sliding down smooth surfaces, as if there
was nothing to stop the motion or to slow it down. But
we know that real life is not like that: something may
be hard to move because it is resting on a rough surface
and, however hard you push, it never gets started. Or
if it is already moving it doesn’t go on forever – even-
tually it stops. But Newton’s first law told us that an
object could only change its “state of uniform motion in
a straight line” if some force was acting on it – to make
it move faster or to slow it down. Even when some-
thing is falling ‘freely’ through the air – perhaps a man
falling from an aircraft, before he opens his parachute
– the constant force due to gravity doesn’t produce an
acceleration that goes on forever: there is a ‘terminal
velocity’ and when the speed stops increasing the total
force on the body must be zero. In other words, the
force applied by gravity, or by pushing or pulling, must
be opposed by some kind of resistance; and when the
two forces are equal and opposite the state of motion
will stop changing. In Dynamics, we’ve usually left this
resistance out of our calculations, saying it was so small
we could forget about it and that our equations would
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be a ‘good approximation’. But in Statics, where the
forces acting are ‘in balance’ and result in equilibrium,
we can’t neglect anything, however small. The resis-
tance to motion offered by a rough surface, or by the
air being pushed out of the way by a falling body, is
called friction. It opposes any kind of motion and it’s
not easy to make theories about it because it depends
on very small details of the ‘interface’ between things in
contact. But it’s so important that life would be very
different without it. You wouldn’t even be able to walk
without it! Try walking on a very smooth slippery sur-
face: if you step forward with one foot, the other one
goes backwards and your centre of mass stays where it
was – without friction you have nothing to push against.
And you wouldn’t be able to write, because without fric-
tion the pen would slip through your fingers!

So how do we deal with friction in our theories? We have
to fall back on experiment, which can give us ‘empirical’
laws, that can then be expressed mathematically. For
hundreds of years the laws of friction have been known;
and they’re very simple to write down and apply. A
body like, say, a brick, resting on a horizontal surface
(Fig.37) will feel only the the downward force (its weight
W) due to gravity, and an upward reaction (N = −W)
exerted by the surface. Suppose you now apply a hori-
zontal push F, as shown in the Figure.
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What you’ll find is this: At first nothing happens; but
then, when F reaches a certain value F0, the equilibrium
is broken and the brick begins to slide. At that point, F
is exactly opposed by a frictional force f , which arises
from the contact between the two surfaces – the under-
neath of the brick and the surface that supports it. So
we can say f ≤ F0, where the equality applies just when
the brick begins to move. Moreover, F0 depends only
on the nature of the two surfaces and N , the modulus
of the normal force N that presses them together: if you
double N then you double F0 – the maximum frictional
force you can get is proportional to N . Putting all this
together, the basic law of friction can be written

f ≤ µsN, (6.15)

where the proportionality constant µs is called the “co-
efficient of (static) friction”. Once the block starts mov-
ing, the frictional force usually becomes a bit smaller,
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but the same relationship holds except that µs is re-
placed by µd – the “coefficient of (dynamical) friction”.
Note that both coefficients, relating one force to another,
are numbers – without physical dimensions – and that
they relate only the magnitudes of the forces. For any
given surfaces they can be found only by experiment.
Also N is always normal to the contact surface, while f

is perpendicular to N and opposes the force F producing
the motion.

Equation (6.15) is not an exact law; but it usually holds
in good approximation and is easy to apply. Let’s have
a go.

Figure 38 shows a ladder propped against a vertical wall
(the y-axis): without friction between the foot of the
ladder and the horizontal floor (the x-axis), there could
be no equilibrium (can you say why?). The ladder would
just slide down before you could even start to climb it.
Suppose the ladder has length L, with its CM at the
midpoint, and that its foot is at the point (X, 0) while
its top is at (0, Y ). The labelled arrows indicate the
forces acting:

W = weight of the ladder,

N = normal reaction from the floor,

f = frictional force (f ≤ N),

F = normal reaction from smooth wall.

Resolving all forces into their x- and y-components, equi-
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librium requires that

(a) F − f = 0, (b) N −W = 0,

for no motion in the x- and y-directions.

Now take a horizontal axis through the foot of the lad-
der: the condition for zero torque around the axis is,

(c) − F × Y + W × (1
2
X) = 0.

The first question to ask is: Will the ladder stay up, or
will it slip? And of course we’ll need to know how long
and heavy it is; and also what angle it makes with the
wall and what is the value of the coefficient of friction.
To make the arithmetic easy let’s take the length as
L = (13/2) m and put the foot of the ladder (5/2) m
away from the wall. Suppose also that W = 80 kg wt
and that the coefficient µs = 0.4.

There are now three conditions (a,b,c) and the things we
don’t know are f, N, F – so we have enough equations
to find them. It’s easy: from (b) we have N = W = 80
kg wt; and from (c) F × 6 = W × (5/4), which gives
F = 50/3 kg wt. Finally, from (a), f = F = (50/3) kg
wt.

Now the greatest possible value of f is 0.4×N = 0.4×
80 = 32 kg wt. So we’ve answered the question: we only
need a frictional force of (50/3) =16.667 kg wt to keep
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the ladder in equilibrium, so all is well – f can go up to
32 kg wt before the ladder will slip!

The next question to ask is: How far can I climb up
the ladder before it slips? Try to answer this for your-
self. Put in your own weight, w, and suppose you go a
horizontal distance x from the foot of the ladder. Then
ask how equations (a),(b) and (c) must be changed and
finally solve them.

Exercises (in preparation)

157



Chapter 7

Some simple machines

7.1 Levers

A machine or device is some kind of tool that will help
you to do a particular job, like lifting a heavy weight
or digging a hole in hard ground. One of the simplest
machines you can imagine is probably a lever, which
can take many forms depending on what you want to
do; and the simplest lever is just a strong iron bar –
strong so it won’t bend when you use it. Two kinds of
lever are shown in Fig.39, each being used for a similar
purpose – to topple a heavy block of wood. In Fig.39a
a long bar is supported (at some point P) by a pivot,
strong enough to carry a heavy weight without sinking
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into the ground and ‘sharp’ enough to allow the bar to
turn easily around the particular point P.

fW

F
P

(a)

f

F

W
(b)

Figure 39

Suppose you want to push over the big block of wood,
on the left in Fig.39a, and it’s much too heavy to move
by hand. You can do it by putting one end of the lever
under the block (you may have to dig a small hole if
there isn’t enough space to get the bar in) and then
pressing down with all your weight on the other end.
How does it work?

Suppose the horizontal distance from the pivot P to the
end of the bar, under the block, is d1 and that from P
to the point where you apply the force f is d2. Then the
force F applied to the block when it just starts to move
will be equal but opposite to its reaction −F on the bar.
When the bar is ‘in balance’ we can take moments about
P and say that the anticlockwise moment of −F plus the
clockwise moment of our applied force f must be zero;
and that means that −Fd1 + fd2 = 0.The ratio of the
magnitudes of the two forces is thus R = F/f = d2/d1:
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the force you can apply to the block is R times as big
as the force you have to apply with your muscles. This
ratio is called the mechanical advantage of the device
– with good reason, because if the bar is 2 m long and
you put the pivot 10 cm from the edge of the block you
can apply an upward force to the block of twenty times
your own weight!

Figure 39b shows another kind of lever, in which the bar
is bent at one end: that’s the end you use, by putting
it under the edge of the block and this time pulling the
free end of the bar (which is nearly vertical) towards
you. Sometimes it’s easier to pull than to push; and
also there’s no need to supply a separate pivot – the
bent end of the bar acts as its own pivot, provided you
put a bit of iron plate under it so that it doesn’t sink into
the ground. In both cases, whether you push or pull, the
mechanical advantage is R = d2/d1; but notice that in
Fig.39b the distance d1, from the lifting end to the pivot
(the point of contact between bar and ground - or plate)
can be very small, making the ratio R correspondingly
larger.

There are many other kinds of lever, but the idea is
always the same: There is a Load, a Pivot, and an Ap-
plied Force; and if the distance from Load to Pivot is d1,
while that from Applied Force to Pivot is d2, then your
mechanical advantage is the ratio d2/d1 – the force you
apply is ‘magnified’ by this factor.
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7.2 Weighing machines

At the beginning of Book 1, the idea of weighing things
was introduced. The thing to be weighed was put in a
‘pan’, which moved a pointer over a scale (marked in
kilogramme weight units) to show how much the object
weighed. The weight is a force and two forces are equal
if they move the pointer to the same point on the scale.
The weighing machine must be calibrated by putting,
in turn, 1,2,3,... standard units (of 1 kg) in the pan and
marking the ‘pointer readings’ on the scale in the same
way; and if an object put in the pan moves the pointer
to half way between the points marked ‘2 kg’ and ‘3 kg’
then we say it weighs 2.5 kg.

The basic operation in weighing is that of comparing

two weights. The easiest way of doing that is to make
a simple balance: all you need is a wooden board and
something to act as a pivot as in Fig.40. Near each
end of the board you draw a line to show where the
weights must be placed. Before putting anything on
the board you must make sure it stays ‘in balance’ (i.e.
in equilibrium) when you rest it on the pivot, placed
halfway between the two lines (if it doesn’t, you can add
a lump of clay on one side or the other until it does).
When it’s right, as near as you can make it, go ahead –

To use the balance you need a standard set of weights:
perhaps a small plastic bag of sand would weigh about
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100 gm, so you’ll need ten of them to make 1 kg. Make
sure they are equal by putting one on each side (on top of
the line) and checking that they stay in balance: then, if
the distance from the pivot is d, one weight will have an
anticlockwise moment d× w1 and the other a clockwise
moment −d × w2; so the total torque will be zero only
when d×(w1−w2) = 0 and the units are equal, w1 = w2.
Now you can weigh anything up to 1 kg by putting it on
one side and seeing how many 100 gm units you must
put on the other (w2) side to get equilibrium. When
the weight w1 is balanced by five units, then w1 = 500
gm. If 5 units are not enough, but six are too much,
you’ll need a set of sub-units (each of, say, 20 gm) and
you can go ahead in exactly the same way; if you have
to add two sub-units to get things to balance then the
unknown W will be 540 gm or 0.54 kg.

w1 w2

Figure 40

Base

Figure 41

Of course such a simple ‘machine’ is not going to give
accurate results (can you give some reasons?) but it
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can easily be improved. A more accurate type of bal-
ance is indicated in Fig.41. It is usually made of metal
and contains more than one pivot. The central column
supports the horizontal arm on a ‘knife-edge’; and two
equal ‘pans’ hang from the two ends of the arm, each
being supported on its own knife-edge. There’s usually
a pointer, with a scale behind it, to show when things
are exactly in balance – but not for showing the weight.
The standard weights to be used are now usually very
accurately made pieces of metal, coming in units of 100
gm, 50 gm, 20 gm, 10 gm etc. down to 1 gm, 0.5 gm
(5 milligrammes), and even smaller sub-units, depend-
ing on what the balance is being used for. This kind of
balance was used for many years in weighing chemicals,
in shops and laboratories, but nowadays you nearly al-
ways find electronic devices which automatically show
the weight in figures.

Another kind of weighing machine is still widely used in
markets, for weighing heavy things like sacks of vegeta-
bles – or even people. In its simplest form it is made
from a long iron bar, hanging from a strong beam (as
shown in Fig.42) on a hook which acts as the pivot. Not
far from the pivot hangs a scale pan on which you put
the thing you want to weigh. The standard weights are
usually heavy metal slabs going from, say, 5 kg down to
1 kg that you can put on a metal plate hanging from the
bar – on the other side of the pivot – as in the Figure
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. So if you put two of the big weights and three of the
smallest on the plate you’ll have a 13 kg weight.

beam

d

d1

d2

W W1 W2

Figure 42

If you want to be more accurate you’ll need also sets
of smaller weights, perhaps going down from 500 gm to
50 gm, and a smaller plate to carry them, which you
can hang from a different point on the bar – as shown
in the Figure: this kind of balance used to be called
a “steelyard” (the ‘yard’ being an English measure of
length, a bit shorter than the metre, and ‘steel’ being a
much stronger material for making the bar from). Often
the bar has a number of holes at various points, so you
can choose where to put the weights, according to the
load you are weighing.

To use this kind of balance, you put the load on the
scale pan (shown on the left in the Figure) and hang
the weight you guess will be about right from the first
hole to the right of the pivot. If the distance d1 is twice
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the distance d, and the guessed weight is W1 (e.g. 15 kg
if you’ve put three of the 5 kg slabs on the plate), then
the balance will go down on the left if the unknown W is
greater than 2 ×15 = 30 kg; but down on the right if W
is less than 30 kg. Suppose it goes down on the right. If
you take away one of the 5 kg weights W1 will be 10 kg;
and if the balance then tips to the left you can then say
W > 2× 10 = 20 kg – so you took away too much. Try,
instead, with W1 = 14 kg (adding two weights of 2 kg):
if it still tips to the left, then W > 2 × 14 = 28 kg. So
you can say 28 kg < W < 30 kg. Of course if your guess
of 28 kg was correct the balance will tip neither left nor
right – it will “stay in balance” on the knife-edge. But if
this is not so, then you’ll have to start with the smaller
weights.

Suppose the smaller weight (W2) hangs at a distance
d2 = 4d from the pivot. Then the condition for stay-
ing in balance – the weights having zero total moment
around the pivot – will be

d×W − d1 ×W1 − d2 ×W2 = 0.

When this condition is satisfied (with d1 = 2d and d2 =
4d) we can cancel the factor d and write W = 2W1+4W2.
And if equilibium results when the smallest weight is
W2 = 150 g (=0.15 kg) then we can say W = 28 + 4×
0.15 = 28.60 kg.

Balances of this kind have been used for thousands of
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years in all parts of the world: you find pictures of them
in the wall paintings in Egyptian tombs, in ancient Per-
sian manuscripts, and in many other places. They can
also be found in improved forms, which are easier to use.
For example, the arm of the balance which carries the
weights sometimes has a scale, with numbers showing
the distance of points from the pivot, and a single fixed
weight W0 can slide along the scale. If equilibrium re-
sults when the weight (or rather its centre of mass!) is at
a distance D then the unknown weight is W = (D/d)W0

– which can be read off directly from the scale, once it
has been calibrated.

7.3 The wheel

Wheels, in one form or another, have also been in use
for many thousands of years. In this book, we met them
first in thinking about pushing and pulling things, us-
ing some kind of cart: without the cart, and its wheels,
you’d have to drag everything you wanted to move – so
the invention of the wheel was an enormous step for-
ward. Now we know about friction it’s clear that the
wheel makes it easier to move things by getting rid (al-
most completely) of the forces called into play when
things rub together: if you try to drag a heavy box
over rough ground it may be impossible, but if you put
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wheels on it it will run smoothly. Until a few hundred
years ago this was one of the most important uses of the
wheel; another one being that it made it easier also to
rotate heavy objects, like a heap of wet clay, by putting
them onto a horizontal wheel, or table, with the axis
pointing vertically upwards. The “potter’s wheel” has
been in use for probably two or three thousand years in
the production of urns and pots of all kinds.

The next big advance was in the use of wheels for moving
water in countries where it hardly ever rains and water
is very precious. Nothing can grow without water; and,
even if there is a short rainy season, the water soon runs
away unless you can get it out of the river and up onto
the land, where it’s needed for growing crops. How to
do it is the problem of irrigation. And if you have
to move water you need energy. One way of solving
both problems came with the development of the water
wheel. The first wheels of this kind probably came from
Egypt, where they were in use over a thousand years ago:
they came to be known as “noria” wheels and in some
places they can still be found. At Hama, for example,
in Syria there are some giant wheels (20 m or more in
diameter!) which have been running continuously for
hundreds of years, using water power to lift water from
the River Euphrates and supply it to aqueducts, which
carry it a long way to irrigate the fields.

First, let’s look at a simple water wheel of the kind that
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was widely used in some countries during the Indus-
trial Revolution – when people started working with ma-
chines, in factories, instead of depending on their own
muscles. Fig.43 shows a wheel of the type used in driv-
ing a heavy ‘millstone’ for milling grain to make flour for
bread; they were also once used for driving mechanical
hammers in the steel industry (but more of that later).

Water supply →

Waste water →

Figure 43

The ‘water supply’ comes from a point ‘upstream’ on the
river, where the water level is higher; it comes to the mill
wheel along an open pipe or channel (at the top in the
Figure) and falls onto the specially made ‘boxes’ around
the edge of the wheel. As the boxes fill with water, their
weight produces the torque that turns the wheel. But
as they go down the water spills out; and finally it goes
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back into the river as ‘waste water’ – having done its
work.

The giant noria wheels at Hama are very similar in de-
sign, but do exactly the opposite job: they take water
from the river (at low level), by scooping it up in the
‘buckets’ fixed around the rim of the wheel, and then
emptying them into the aqueduct (at high level) when
they reach the top. A wheel of this kind is shown Fig.44,
where you see it from the edge, which lies in the verti-
cal plane with the axle horizontal. The river, shown in
grey, is flowing away from you and the top edge of the
big wheel is coming down towards you.

Aqueduct

Noria wheel

Power
wheel

Figure 44

Because a lot of energy is needed to lift all that water,
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the wheel needs power to drive it; but, if there’s plenty of
fast-flowing water in the river, some of it can be used to
turn a much smaller wheel like the one in Fig.44 and this
can provide the power. How to get the energy from one
wheel to the other is a problem in power transmission,
which we’ll think about next.

Suppose we have two wheels, one big and one small, and
want to make one drive the other. The simplest way of
doing it is to put them side by side in the same plane,
each with its own axle, which supports the wheel and
provides the axis around which it can turn; and then
to tie them together with a loop of rope or a ‘belt’ –
as in Fig.45 (below). Each axle must be carried by a
pair of ‘bearings’, to hold it in the right place, and the
belt must be kept tight so that it doesn’t slip when the
wheels are turning.

(a) (b)
Figure 45

Note that the wheels don’t have to be close together; but
if they are (Fig 45a) then they mustn’t touch. That’s
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because (as the arrows show) the two wheels turn in
the same sense (clockwise or anticlockwise), so the parts
that come closest are going in opposite directions; and if
they were rubbing together the friction would slow them
down – or even stop them.

The big wheels in the Figure have diameters three times
as big as the small wheels; so, if they are d and D =
3d, any point on the rim of the small one will travel a
distance πd in one turn and that’s the length of rope it
will pull in. It will also be the distance moved by the
other end of the rope, where it meets the big wheel; but
it’s only a fraction of the distance π×3d that any point
on the big wheel travels in one complete turn. So one
turn of the big wheel takes 3 turns of the small one! The
small wheel has to turn D/d times as fast as the big one,
where D is the diameter of the wheel it is driving and d
is its own diameter. This result doesn’t depend on how
far apart the wheels are, as long as the belt is tight and
there is no slipping. The big wheel in both Fig.45a and
Fig.45b goes just three times as slow as the wheel that
is driving it.

Now we have a way of transmitting power from one ro-
tating wheel to another we can look at ways of using
the idea. In Fig.44, for example, the ‘power wheel’ has
to transmit its energy (remember that power is the en-
ergy spent in unit time) to the noria wheel. If, in the
Figure, the river is flowing away from you, then both
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wheels will turn the same way – their tops coming down
towards you. So it’s possible (though I don’t know if
this is the way it’s done in Hama!) that the building
between the two wheels holds two much smaller wheels,
arranged as in Fig.45b, with the smaller of the two fixed
on the axle of the power wheel and the bigger one fixed
on the axle of the noria wheel. That way the flowing
water, pushing against the big flat boards of the power
wheel, will drive the noria wheel.

Another example is the water-driven mechanical ham-
mer, which was once used in the steel industry, in coun-
tries where it rains a lot and there are many small streams
coming down from the hills. Some of this machinery,
originally made from wood, can still be found today –
in museums – and sometimes can be seen actually work-
ing.

Figure 46 shows how it works. The big hammer on
the right has to be lifted and then dropped (it’s very
heavy) on a bar of red-hot metal which will be put on
the heavy steel ‘anvil’ – where it will be beaten into
shape. The power for doing this, again and again, all
day long, comes from a water wheel like that in Fig.43.
It is transmitted from a small wheel (overhead on the
left) through a belt which drives a bigger wheel, which
in its turn lifts and drops the hammer. How can it do
that?

The big wheel has strong pegs sticking out of it, close to
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the rim, while the shaft of the hammer is supported on a
pivot, which allows it to be turned when you press down
on the free end. That’s what is happening in Fig.46a,
where one of the pegs on the wheel that drives it is
pressing down on the end of the shaft – and lifting the
hammer.

Pivot

Anvil→

Pivot

Anvil→

(a) (b)
Figure 46

In Fig.46b the hammer is shown in the lifted position
and the end of its shaft is just about to slip off the
peg as the wheel goes on turning. That gives the man
who works the machine just enough time to put the red-
hot bar on the anvil before the hammer comes crashing
down and flattens the metal; and that’s how knives (and
swords) were made! Usually there would be many ma-
chines, side by side, all driven by the same water wheel.

Nowadays, of course, things have changed and the power
needed in our factories hardly ever comes from water: it
comes instead from burning fuel – wood or coal, gas or
oil – and a lot of the energy it contains is wasted in
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heat and smoke. We’ll study energy production in other
Books of the Series; but the wheel will always play an
important part in our daily life.

7.4 Clocks and mechanisms

The next big advance in using the wheel came with
the invention of the gearwheel, a wheel with ‘teeth’
or ‘cogs’ around its rim. Two such wheels are shown in
Fig.47, which you can compare with Fig.45a. Instead of
the belt, one wheel drives the other by making contact

with it, the teeth of the first wheel fitting into the spaces
between the teeth of the second; the gearwheels are said
to ‘engage’. So when the first wheel turns, the second
one turns with it but in the opposite sense, as indicated
by the arrows in the Figure.

Figure 47 Figure 48

Of course you may want the second wheel to rotate in
the same direction as the one that’s driving it; and if the

174



first wheel is going anticlockwise and you can’t change
it (perhaps it’s fixed to a water wheel – and you can’t
change the way the water flows!) how can you make the
driven wheel go the same way, anticlockwise?

The next Figure (Fig.48) shows how it can be done.
With the driving wheel on the left, going anticlockwise,
the next wheel must go clockwise; but, if you add a
third wheel, then that will again go the opposite way
– anticlockwise – which is what you wanted! In fact, if
you have a ‘train’ of N wheels, the last one will turn
the same way as the first if N is an odd number, but
the opposite way whenever N is even. And this doesn’t
depend on the size of the wheels, or on how many teeth
they have. So when you are transmitting power through
a train of wheels you can always get the right sense of
rotation by using the right number of wheels. You can
also make the last wheel rotate faster or slower than
the first, because when a small wheel drives a bigger
one the speed will be reduced, while a big wheel driving
a smaller one will make it go faster.

A train of wheels is an example of a mechanism, usu-
ally just a part of a machine, which carries out one spe-
cial job. If you ever take an old clock apart you’ll find
it’s full of strange mechanisms, each with its own job
to do. In the rest of this Section we’ll look at other
examples.
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In a clock the number 60 is very important: there are
60 seconds in a minute and 60 minutes in an hour. The
simplest device for measuring time is the pendulum
– just a weight (called a ‘bob’) on the end of a string
or a light stick. The time taken for one ‘double-swing’
(back and forth) is the period and this depends (in good
approximation) only on the length l of the pendulum
and the acceleration due to gravity (g, which we met
in Chapter 1). When l ≈ 1 m the period is almost
exactly one second; so we could use a simple pendulum
as a clock – every 3600 double-swings would tell us that
1 hour had passed. But who is going to count them?
That’s the job of the clock.

Three things are needed: power to drive the clock; a
mechanism to convert every 3600 swings into the turn
of a pointer (the ‘hour-hand’) through one twelth of a
complete revolution; and some way of giving the pendu-
lum a little push, now and then, to keep it swinging. It
can all be done by using wheels.

Let’s start in the middle by looking for reducing the
rate of rotation of a wheel by a factor of 60, which is
3 × 4 × 5, so that the clock won’t run down too fast.
We already know (Fig.47) that we can get a factor of 3
from two wheels, by making the diameter of one three
times that of the other; and clearly we can do the same
for factor 4 and 5. In the next Figure (Fig.49a) we
show wheels of diameters d and 4d, with six teeth and
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24 teeth, respectively, so the big one will go four times
slower than the one that’s driving it. We could even
get that factor of 60 by making a wheel sixty times the
diameter of the small one and cutting 360 teeth into it
– though that would take a lot of material and a lot of
patience!

(a) (b)
Figure 49

But now we do something clever! We combine this mech-
anism with the one in Fig.47 by putting the 6-tooth
wheel on the same axle as the 18-tooth wheel. So now
Wheel 2 will rotate 3 times slower than the driving wheel
(Wheel 1) and Wheel 3 will rotate 4 times slower than
Wheel 2 – and 4×3 times slower than the driving wheel!
We only need one more pair of wheels, with diameters
d and 5d (6 teeth and 30 teeth), to get in exactly the
same way the remaining factor 5. And then we’ll have
a mechanism, with only six wheels and three axles, that
will give us the magic factor of sixty! Once we have have
made two of them, we can use the first one to go down
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from pendulum swings (seconds) to minutes; and the
second to go down from minutes to hours. All we need
now is a source of power, to keep everything moving,
and some kind of control to make sure the wheels don’t
all turn too fast – running down the clock in almost no
time.

In the simplest clocks the power is usually provided by a
falling weight, the loss of potential energy being changed
into rotational motion, which has to overcome the fric-
tional forces that resist the motion. You have to ‘wind
up’ the clock at night to give it enough energy to get
through the next day; and to do this you can hang the
weight on a string (or a wire cable) and wind the cable
round a cylinder (or ‘drum’), as in Fig.50a, by turning
the handle.

Handle

Ratchet To weight

(a) Winding drum (b) Ratchet and pawl
– seen from leftFigure 50

To prevent the weight dropping to the ground, as soon as
you let go of the handle, another small device is needed.
The axle of the drum must have a special kind of toothed
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wheel on it (called a ‘ratchet’) and something (called a
‘pawl’) to ‘lock’ the wheel if it tries to turn the wrong
way. The ‘ratchet and pawl’ is shown in Fig.50b and you
can see how it works: in the picture the wheel can only
turn in the clockwise direction, the pawl being lifted by
the force acting on it and letting the wheel turn – one
tooth at a time; if you try to turn it the other way the
pawl gets pushed to the bottom of the tooth – and stops
it moving.

Now we come to the most important thing, the ‘brain’
of the clock, which controls all its movements: what we
need is some device to hold back the wheels, so they
don’t let the clock run down (wasting all the potential
energy we gave it in winding it up) in the first few sec-
onds. We want it to take 24 hours, so it needs winding
up only once a day.

The thing that takes care of this is called an ‘escapement
wheel’, because it holds back the teeth but lets them
‘escape’ one at a time, once for every double- swing of
the pendulum. Figure 51 shows just the top half of such
a wheel, along with the ‘escapement’ itself, which has
two legs and sits astride the wheel. In the first position
(Fig.51a) the left-hand leg is digging its ‘heel’ (really
called a “pallet”) in between two teeth; and is pressing
itself against the vertical side of a tooth so it can’t turn
in the direction of the arrow (clockwise). The power
that drives the wheel will have to wait – but for what?
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(a) (b)

Figure 51

At this point, the pendulum (hanging down behind the
escapement in the direction of the thick arrow) is just a
bit to the right of vertical. But as the pendulum swings
back to the left it moves the escapement so that its left
leg comes up, letting the tooth ‘escape’ and move one
place to the right. At the same time, its right leg goes
down (Fig.51b), between two teeth further along the
wheel, and again stops the wheel turning. But only un-
til the pendulum completes its double-swing and every-
thing returns almost to Position (a): this really means
just before Position (a), where the tooth is just about to
move. So the escapement wheel moves by one tooth at
a time, once in every double-swing of the pendulum!

How does the power keep the pendulum swinging? The
pendulum hangs down between the two prongs of a fork
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(not shown), which is fixed to the axle of the escape-
ment. As the escapement rocks backwards and forwards,
the fork gives the pendulum a little push, to the left
or the right – just enough to keep it moving. To do
this, the pallets must be carefully cut to shape so that,
when the pallet slips off a tooth, its ‘sloping’ face (at
the bottom) is given a sudden impulse by the tooth as it
pushes its way past: that part of the pallet is called the
“impulse face”. Similarly, the tooth is ‘stopped dead’
when it meets the “dead face” of a pallet. The impulse
goes to the pendulum through the fork that embraces it;
and keeps it swinging, once every second, for as long as
there is power to turn the wheels. The “tick...tock” of
the clock is the noise made by the teeth of the escape-
ment wheel alternately striking the ‘impulse face’ and
the ‘dead face’ of the pallets.

What a marvellous invention! Such a small and simple
thing – which has kept pendulum clocks going, all over
the world, ever since it was first thought of 300 years
ago.
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Chapter 8

Turning mass into
energy

8.1 A reminder of special

relativity theory

In Book 2 we started from simple ideas about measuring
distance and showed how the whole of Euclid’s geometry
could be built up from a metric axiom (Section 1.2):
in three dimensional space this states simply that the
distance s from some origin O to any point P can be
obtained from the formula

s2 = x2 + y2 + z2 (8.1)
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where x, y, z, the coordinates of point P, are distances
from O to P measured along three perpendicular axes
(the x-axis, y-axis, and z-axis). (If you’ve forgotten all
this, go back and look at Chapter 5 in Book 2.) And
for two points whose coordinates differ by infinitesimal
amounts dx, dy, dz, the distance between them is ob-
tained in the same way

ds2 = dx2 + dy2 + dz2. (8.2)

This ‘differential form’ of (8.1) is called the ‘fundamental
metric form’, dx, dy, dz being the differentials (Book
3, Section 2.4).

But we ended Chapter 7 of Book 2 by saying how much
our ideas about space had changed over the last 100
years. Einstein showed that Euclidean geometry could
not be perfectly correct and in his theories of relativity
showed how and why it must be changed. The changes
needed are so small that in everyday life they are com-
pletely negligible; but in Physics they can’t be neglected.
By taking them into account, the world has already been
changed!

In coming to the end of Book 4, the first one on physics,
you now know enough to understand what’s been hap-
pening; so let’s first remind ourselves of the relativity
theory outlined in Section 7.2 of Book 2. The new thing
is that the idea of a point in space, indicated by three
distances (x, y, z), needs to be replaced by an event in
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which a fourth ‘coordinate’ t is also included: If I say
“I’m here today but there tomorrow” then I’m referring
to two events, the first being x1, y1, z1, t1 and the second
being x2, y2, z2, t2. The sets of four ‘coordinates’ then
indicate two points in spacetime; and if we want to
define the ‘separation’ of two ‘nearby’ events we’ll do it
by writing

ds2 = −dx2 − dy2 − dz2 + c2dt2, (8.3)

where the constant c is put in to keep the physical di-
mensions right – it must have the dimensions of veloc-

ity LT−1 so that when multiplied by a time it gives a
distance, like the other quantities dx, dy, dz. But what
about the + and − signs? Why don’t we just add all
the terms together?

Equation (8.3) is used as the fundamental metric form in
‘4-space’; and ds defined in this way is called the inter-
val between the two events. We met a similar equation
first in Section 7.2 of Book 2, where we noted that the
condition

s2 = c2t2 − x2 − y2 − z2 = 0 (8.4)

was one way of saying that some kind of signal, sent out
from the origin of coordinates (x = y = z = 0) at time
t = 0 and travelling with velocity c, would arrive after
time t at points on the surface of a sphere of radius R =
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√

x2 + y2 + z2. That was why we started to think that
separations in ‘ordinary’ space (dx, dy, dz) and those in
time, namely c dt (defined after multiplying by c to get
the dimensions right), should be treated differently. By
choosing (8.3) as a measure of the ‘interval’ it is clear
from the start that a ‘time coordinate’ ct is not the same
as a space coordinate: the interval between two events
is said to be ‘time-like’ if the time term c2t2 is greater
than the space term x2 + y2 + z2, or ‘space-like’ if it’s
the other way round.

The next important idea in Section 7.2 of Book 2 was
that of the invariance of the interval as measured by
two different people (the ‘observers’) in different refer-
ence frames, each moving with uniform velocity relative
to the other. Such frames are inertial frames, in which
Newton’s laws about the motion of a particle, and its
resistance to change (‘inertia’) when no force is acting,
are satisfied for an observer in the same frame as the
particle.

In the Figure below two such reference frames are in-
dicated within an outer box, Frame 1 holding the first
observer and Frame 2 (shaded in grey) holding the sec-
ond; Frame 2 is moving with constant speed u along the
x-direction and for Observer 2 it’s ‘his world’.
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O x-axis

y-axis

Frame 1

O′ x′-axis

y′-axis

Frame 2
x

x′

D (= ut)

Event(x,y,z)

Figure 52

We first met the idea of invariance in Book 2 (Section
5.2), where we noted that certain changes of coordinates,
in which x, y, z are replaced by x′, y′, z′, left unchanged
lengths and angles in 3-space. For example, the distance
r from the origin O to Point P, with coordinates x, y, z
is given by r2 = x2 + y2 + z2; and any transformation
in which the line OP is simply rotated into OP′ leaves
invariant the squared length –

x2 + y2 + z2 → x′2 + y′2 + z′2 = r2.

But now we’re thinking about events, in which four co-
ordinates are needed to specify a corresponding point in
spacetime; and we already know from Book 2 that it’s
possible to find transformations in which x, y, z, t are re-
placed by x′, y′, z′, t′ in such a way that the form (8.4)
stays invariant. The simplest transformation, is the one
that corresponds to shifting the reference frame for Ob-
server 1 along the x-axis by an amount D equal to an
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x-velocity (u) times the time (t) on his clock: this is
the distance from the origin O to the origin O′ of the
new reference frame (Frame 2) in which we’re putting
Observer 2. This is usually taken as the ‘standard’
Lorentz transformation: it relates the distances and
time (x′, y′, z′, t′) at which Observer 2 records the event
to those (x, y, z, t) recorded by Observer 1. There’s only
one event, taking place at the point shown by the bold
dot in Frame 2, but both observers can see it. The
transformation equations are

x′ = γu(x− ut),

y′ = y,

z′ = z,

t′ = γu

(

t− u

c2
x
)

, (8.5)

where the quantity γu, which depends on the speed u
with which Frame 2 is moving relative to Frame 1, is
given by

γu =
1

√

(1− u2/c2)
. (8.6)

γu is called the Lorentz factor. The transformation en-
sures that

s2 = c2t2 − x2 − y2 − z2 = c2t′2 − x′2 − y′2 − z′2 (8.7)
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so that (8.4) is an invariant, even when the space-time
interval is not a differential form, the separation between
O and P being as big as we please. And now we see why
the + and − signs are needed.

Some of the amazing results that follow from the Lorentz
transformation equations were noted in Book 2 Section
7.2. Perhaps they seemed unbelievable at the time –
especially as you hadn’t studied any physics. But now
you know something about mass and energy we can start
to connect all these strange ideas together; and you’ll
get some even bigger surprises. First, however, you’ll
have to do a little bit more mathematics: after all we’re
going from 3-space to 4-space and that’s a big jump. A
hundred years ago the cleverest people in the world were
only just beginning to think about it.

8.2 Vectors in 4-space

First let’s remember again what (8.4), or its differen-
tial form (8.3) really means. A typical ‘event’ can be
some kind of signal or disturbance, which travels through
space with a certain speed, which we’ve called c; it might
start at point O and move away in all directions, like the
ripples on a pond when you throw a stone into it, arriv-
ing at point P (and many others) at some time t. Each
observer has a clock and the two clocks are set to the
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same time (or ‘synchronized’) so that when Frame 2 is
just passing Frame 1 (O′ coinciding with O) they show
the same zero time, t′ = t = 0. And each observer has,
we suppose, reliable instruments for accurately measur-
ing distances. So each observer can record the values of
the coordinates and times, relative to his own frame, at
which the event – the arrival of the signal at P – takes
place.

Each observer thinks his own time is ‘right’ – after all
they have ‘perfect’ clocks and they were set to agree at
the start of the experiment; but what does that mean?
The fundamental invariant is often written as

ds2 = −dx2 − dy2 − dz2 + c2dt2

= c2dτ 2 = invariant. (8.8)

By writing the invariant as c2dτ 2, we simply introduce
a proper time interval (dτ) between the two events. So
if a clock is fixed in any frame it will not move relative
to the frame; and in any small interval we can therefore
take dx = dy = dz = 0, finding dt = dτ . The ‘proper
time’ for any observer is the time he reads on his own
fixed clock. But this does not mean that the time t′ at
which an event is observed in Frame 2 (i.e. by Observer
2) is the same as the time t recorded by Observer 1;
because both Observer 2 and his clock are moving with
velocity u relative to Frame 1 and the times recorded
will therefore be related by the Lorentz transformation
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(8.5). In particular

t′ = γu

(

t− u

c2
x
)

= γut

(

1− u2

c2

)

= γut/γ
2
u = t/γu

– since the moving clock (fixed in Frame 2) is now at the
point with x = ut. Thus, the times at which the event
takes place are t for Observer 1 and t′ for Observer 2,
related by

t = γvt
′ (8.9)

– the proper (or ‘local’) time for an observer in Frame
2 must be multiplied by γu to get the time for one in
Frame 1. Since γu is always greater than 1, it will always
appear to Observer 1 that things happen happen later
(t larger) in the moving frame than they ‘really’ do (as
shown on his local clock).

One outcome of the time relationship (8.9) will seem
very strange. If one of two twins travels at enormous
velocity in a spacecraft (Frame 2) and returns home after
10 years to the other twin, who never left Frame 1, they
may find it hard to recognise each other. The ‘travelling
twin’ will say he has been away only 10 years (by his
clock); but, if the speed u is big enough to make γu = 2,
the ‘stay-at-home’ twin will say it was 20 years – and
he will have aged by 20 years, because everything that
goes on in living material in Frame 1 will be going on at
the same rate as the clock fixed in Frame 1. Of course,
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this is not an experiment you could actually do because
γu = 2 would require the speed u to be unbelievably
large (how large?– given that c ≈ 3 × 108 m s−1); and
the velocity would have to be uniform and rectilinear to
satisfy Einstein’s assumptions (Book 2, p.60). All the
same, many experiments have been made, with smaller
velocities and very accurate clocks, and all confirm the
equations of this Section.

Now let’s get back to the ideas of mass and motion. In
Newton’s second law, the mass of a particle enters as a
proportionality constant relating the rate of change of its
velocity to the force applied to it. The mass is a property

of the particle and is taken to be a constant. In relativity
theory, things are different, but it is still supposed that
any particle has a property called its proper mass or
rest mass, which ‘belongs’ to it and will be denoted
by m0. This rest mass, carried along with the particle,
is taken to be an invariant, independent of the frame
in which observations are made. How should we relate
it to the coordinates (x, y, z) and velocity components
(vx, vy, vz) when we go from 3-space to 4-space? Note
that the particle velocity may not be the same as the
frame velocity so a different letter is used for it (v, not
u).

First we have to learn how to use vectors in 4-space.
With any displacement of a particle in 4-space we can
associate a 4-vector, whose ‘length’ squared now in-
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cludes a time component as in (8.3):

ds2 = −dx2 − dy2 − dz2 + c2dt2.

But what about the vector itself? In Book 2, and also
in the present book, distances and lengths of vectors
have always been expressed in terms of cartesian com-
ponents along perpendicular axes: in 3-space, for ex-
ample, the squared length of a vector r with compo-
nents x, y, z is given by r2 = x2 + y2 + z2. Here, in-
stead, there are some minus signs and if we tried taking
(−dx,−dy,−dz, cdt) as the components it just wouldn’t
work: the sum-of-squares form would contain only posi-

tive terms, giving ds2 = dx2 +dy2 +dz2 + c2dt2 – which
is not what we want.

The 4-vector components can, however, be chosen in var-
ious other ways to give us the correct invariant ds2. The
simplest one is to introduce, along with the first three
(‘spatial’) components, an extra factor i – the ‘imaginary
unit’ with the property i2 = −1, which you met long ago
in Book 1. Remember that measurements always give
real values and that the components only give a way of
getting those values. So let’s take as the components
of the 4-vector with length ds2 the ‘complex numbers’
(which contain somewhere the symbol i)

−idx1 = −idx, −idx2 = −idy, −idx3 = −idz, dx4 = cdt
(8.10)

192



and note that the sum of squares now gives the right
value for ds2:

ds2 = dx2
1 + dx2

2 + dx2
3 + dx2

4

= −dx2 − dy2 − dz2 + c2dt2.

Sometimes a 4-vector is indicated just by showing its
four components in parentheses: thus the infinitesimal
interval with squared length (8.3) would be

ds→ (−idx1 − idx2 − idx3 dx4). (8.11)

This is the first of a number of important 4-vectors: all
have a similar form, the first three components behave
like those of a displacement vector in 3-space (e.g. on
rotating the frame by changing the directions of the x-
y- and z-axes), but the fourth is a scalar (not depending
on axial directions).

We can get other 4-vectors, all with invariant lengths,
by multiplying the components in (8.10) by any other
invariant quantities, for example the proper time inter-
val (dτ) or the proper mass (m0). First think of the
velocity of a particle: it will have three components
vx = dx/dt, vy = dy/dt, vz = dz/dt for an observer
in Frame 1, and has been called by the letter v, because
it has nothing to do with the u used for the speed along
the x-axis of Frame 2 relative to Frame 1. It is a local

velocity whose x-component, for example, is the limit of
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the ratio of two small quantities, the displacement (δx)
of the particle and the time taken (δt) – all measured by
Observer 1 in Frame 1. How will this particle velocity
look to Observer 2 in Frame 2?

To answer this question we must start from the invariant

interval, whose components are shown in (8.10) and form
the 4-vector (8.11). If we divide every component by the
invariant time dτ corresponding to the time interval dt
measured on the clock in Frame 1, we shall get a 4-
vector with components (leaving out, for the moment,
the factors −i in the first three)

dx

dτ
,

dy

dτ
,
dz

dτ
,

cdt

dτ
.

– and these will behave, on going from Frame 1 to Frame
2, just like those in the basic 4-vector (8.10); they will
undergo a Lorentz transformation. But how can we ex-
press them in terms of velocity components like vx =
dx/dt, as defined above? Clearly, we need an expression
for dτ in terms of Frame 1 quantities. This comes from
the definition (8.8), namely c2dτ 2 = c2dt2−dx2−dy2−
dz2, which gives (note that this is just the ratio of two
squares – nothing has been differentiated!)

dτ 2

dt2
= 1− 1

c2

(

dx2 + dy2 + dz2

dt2

)

= (1− v2/c2),

where (dx/dt)2 = v2
x and the sum of three similar terms

gives the squared magnitude of the particle velocity, v2.
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Now that we have dτ as a function of dt, namely dτ =
√

(1− (v2/c2)dt, we can find the relativistic velocity
components that will appear in the velocity 4-vector. A
common convention is to name the 4-vector components
with a capital (upper-case) letter, so they won’t get
mixed up with the ordinary 3-vector components (shown
in lower-case letters as vx etc.). With this notation, the
first three 4-vector components (still without the −i fac-
tors) will be Vx = dx/dτ, Vy = dy/dτ, Vz = dz/dτ .

Let’s get Vx, knowing the others will be similar: we’ll do
it by relating vx to Vx, which is easier. Thus,

vx =
dx

dt
=

dx

dτ

dτ

dt
= Vx

dτ

dt
. (8.12)

Here vx is a function of dt but is also a function of dτ ,
since dτ is related to dt by dτ =

√

(1− (v2/c2)dt; and
we are using what we know from calculus (Book 3, Chap-
ter 3) to ‘change the variable’. Thus

dτ

dt
=
√

(1− (v2/c2) = 1/γv, (8.13)

where γv is defined exactly like the Lorentz factor (8.6)
except that now it contains the particle speed v instead
of the the speed u of Frame 2 relative to Frame 1.

On putting this last result into (8.12) we find

vx =
dx

dτ

(

1

γv

)

= Vx/γu. (8.14)
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Similar results follow for the y- and z-components of
velocity, while the fourth (time) component in (8.10)
will give

cdt

dτ
= cγv,

where we’ve remembered (Book 3, Section 2.4) that when
y = f(x) the derivative of x as a function of y (the ‘in-
verse’ function) is simply dx/dy = (dy/dx)−1.

On adding the −i factors to the first three (spatial) 4-
vector components we finally get the velocity 4-vector

(−iV1 −iV2 −iV3 V4) = γv(−ivx −ivy −ivz c). (8.15)

This particle velocity will behave, under a change of
reference frame, just like the basic 4-vector (8.11) for
the interval: its components will follow the standard
Lorentz transformation.

8.3 Mass into energy: a hope for

the future?

In earlier chapters we soon found that, in pre-relativistic
dynamics, the linear momentum vector p and the kinetic
energy E = 1

2
mv2 were very important quantities. The

components of linear momentum of a particle moving
with velocity v were simply

px = mvx, py = mvy, pz = mvz , E = 1
2
mv2,
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where of course v2 = v2
x + v2

y + v2
z . We now want to

know what are the corresponding quantities for a very
fast moving particle.

In the last section we saw how a new 4-vector could be
obtained from a given 4-vector simply by multiplying its
four components by any invariant quantity: in that way
we got the velocity 4-vector (8.15) from the displace-
ment 4-vector (8.11) on multiplying it by the reciprocal
(1/dτ) of the proper time interval. The next invariant
quantity we’ll use is the proper mass m0; and, since
linear momentum is particle mass × velocity, we might
expect that m0 times the velocity 4-vector (8.15) will
give us something interesting. Let’s try it. The result is

m0(−iV1 − iV2 − iV3 V4)

= m0γv(−ivx − ivy − ivz c)

= (−iγvm0vx − iγvm0vy − iγvm0vz γvm0c).

The first three components are the ordinary (pre-relativistic)
momentum components px, py, pz, multiplied by the Lorentz
factor γv (along with the usual imaginary factor −i, for
spatial components); the fourth component is m0V4 =
γvm0c). What does all this mean?

What Newton called m, the mass, now seems to be re-
placed by γvm0 – the rest mass, multiplied by a factor
depending on the particle speed v. So let’s go on using
m for this ‘apparent mass’, noting that when the speed
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is very small compared with c, m will become the same
as m0 (quite independent of the speed, just as Newton
had supposed and experiments seemed to confirm). The
relativistic momentum components can thus be written

−iP1 = −imV1,−iP2 = −imV2,−iP3 = −imV3,

P4 = mc, (8.16)

capital letters again being used for the components of
the relativistic 4-vector. The first three components are
all of ‘mass × velocity’ form, as we expected.

The fourth component, however, doesn’t look like any-
thing we’ve met before: it’s simply mc. To interpret it,
remember that in Newton’s dynamics a moving particle
had a kinetic energy (KE) of the form 1

2
mv2. Can you

guess what form it will take in the relativistic theory?
Perhaps, like the momentum components, it will change
only because Newton’s mass m must be replaced by the
apparent mass m = γvm0, which depends on how fast
it’s going? It’s easy to test this idea. Putting in the
value of γv, from (8.13), the apparent mass becomes

m = m0γv =
m0

√

(1− v2/c2)

= m0

(

1− v2

c2

)

−
1
2

= m0

(

1 + 1
2

v2

c2
+ ...

)

,
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where we’ve expanded the square root, using the bino-
mial theorem (Book 3 Section 3.1). On throwing away
the negligible terms (represented by the dots) this can
be written m = m0 +(1

2
(m0v

2)/c2 or, multiplying by c2,

mc2 = m0c
2 + 1

2
m0v

2. (8.17)

Now 1
2
m0v

2 is the KE of a particle of mass m0 mov-
ing with speed v. So what we’ve discovered is that the
quantity m0c

2 (mass times velocity squared – which has
the dimensions of energy, ML2T−2) is increased by the
amount 1

2
m0v

2 when the particle is moving. When the
particle is not moving, relative to the observer, the KE
term in (8.17) is zero and m→ m0. But the energy term
m0c

2 never disappears – it is called the rest energy of a
particle of rest mass m0 and was discovered by Einstein,
who first wrote down the equation

E = m0c
2 (8.18)

– perhaps the most famous equation of the last century.
What it tells us is that any bit of mass is exactly equiv-
alent to a certain amount of energy ; and because c is
so large (≈ 3 × 108 m s−2) that energy will be enor-
mous. One teaspoonful, for example, holds perhaps 10
grammes of water (mass units) – but 10× (3× 108)2 =
9× 1014 kg m2 s−2=9×1014 Joules of energy ; and that’s
enough to boil more than 200 million kg of ice-cold wa-
ter (roughly 200 million litres)! And that’s where we
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are today: if only we could get the energy out of mat-
ter, where it’s locked away in the form of mass, there
would be enough for everyone in the world. You’ll come
back to such problems when you know what ‘matter’ is

– what’s it made of? This is one of the great questions
we meet in Book 5.

Before stopping, however, note that the third 4-vector
we have found holds nearly all we need to know about
the dynamics of a moving particle: it is

(−iP1 − iP2 − iP3 E/c) (8.19)

– where the first three components are just like the x-
y- z-components of momentum in pre-relativity times,
except that the particle mass is m = γvm0. The fourth
component is shown in energy units; and now we know
that E = mc2 it corresponds to P4 = E/c = mc –
agreeing with what we found above. The important vec-
tor (8.19) is called the energy-momentum 4-vector.
Many of the principles we discovered in ‘classical’ (mean-
ing pre-relativistic) dynamics still apply to very fast
moving particles, as long as you remember that the mass
m is not the same as for a particle at rest. So we find
momentum and energy conservation laws need very lit-
tle change. These results haven’t been proved here, but
they can be proved and you can take them on trust. The
very small changes are not noticible unless the particle
speed v is enormous; but we’ve already noted that the
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constant c will turn out (in Book 12) to be the speed of
light. There is a natural limit to how fast anything can
go; and now we can see what will happen when the speed
of a particle gets closer and closer to that limit. When
v → c in the Lorentz factor γv, the mass m = γvm0 gets
bigger and bigger, going towards the limit m0/0, infin-
ity! The faster it goes the heavier it gets, until finally
nothing can move it faster.
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Looking back –

You started this book knowing nothing about Physics.
Where do you stand now?

Building only on the ideas of number and space (Books 1
and 2) and of simple mathematical relationships (Book
3), you’ve come a long way:

• In Chapers 1 and 2 you’ve learnt about buid-
ing physical concepts from your own experince of
pulling and pushing, working and using you en-
ergy. You know about force, mass, weight, and
how things move; and about Newton’s famous laws.
You’ve learnt that energy is conserved, it doesn’t
just disappear – it can only change from one kind
to another.

• Chapter 3 extended these ideas to the motion of
a particle (a ‘point mass’), acted on by a force and
moving along any path. Energy is still conserved.
You learnt how to calculate the path of the Earth
as it goes round the Sun, using the same simple
laws that worked for a small particle. Amazing
that it came out right, predicting a year of about
360 days!

• In Chapter 4 you found out how that could hap-
pen, by thinking of a big body as a collection of
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millions of particles, and using Newton’s laws. You
learnt about the centre of mass, which moves as
if all the mass were concentrated at that one point;
and about momentum and collisions.

• Chapter 5 showed how you could deal with ro-
tational motion. You found new laws, very much
like Newton’s laws, and met new concepts – ‘turn-
ing force’, or torque, and angular momentum.
And from the new laws you were able to calculate
the orbits of the planets.

• In Chapters 6 and 7 you’ve begun to study the
Dynamics and Statics of a rigid body; and the
construction of simple machines. You’re well on
the way to the Engineering Sciences!

• The final Chapter 8 brought you to the present
day and to the big problems of the future. You
found that mass was a form of energy and that
in theory a bottle of seawater, for example, could
give enough energy to run a big city for a week!
– if only we could get the energy out! This is the
promise of nuclear energy.

We all need energy in one way or another: for trans-
porting goods (and people), for digging and building,
for running our factories, for keeping warm, for almost
everything we do. At present most of that energy comes
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from burning fuel (wood, coal, oil, gas, or anything that
will burn); but what would happen if we used it all? And
should we go on simply burning these precious things
(which can be used in many other ways) until they’re
finished. If we do, what will our children use? Another
thing: burning all that stuff produces tons of smoke,
which goes into the atmosphere and even changes the
world’s climate – always for the worse!

We probably have to solve such problems before the end
of this century: how can we do it? Do we go back to
water-mills and wind-mills, or do we turn to new things,
like trying to trap the energy that comes to us as sun-
light – or getting the energy out of the atom? Nuclear
power is being used already in many countries; but it
brings new problems and many dangers. To understand
them you’ll have to go beyond Book 4.

In Book 5 you’ll take the first steps into Chemistry,
learning something about atoms and molecules and what
everything is made of.
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Index

Acceleration
Action and reaction
Angular momentum
Angular velocity
Areal velocity
Aristotle

Balance,
calibration of

Calculus,
differential
integral 30
use of

Central field
Centroid

- centre of mass (CM)
Clocks
Collisions

elastic
inelastic

Compression

Conservation of energy,
differential form of

Conservation of momentum,
angular
linear

Conservative forces
Conservative system
Constant of the motion
Coordinates

Deterministic equations
Differential calculus
Differential equation
Differentials
Dynamics

Ellipse,
area of
axes of
eccentricity of
foci of

Equilibrium
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Energy,

conservation of
kinetic

potential

other forms of
Energy-momentum,

- as a 4-vector

Escapement wheel

Field

Force

Friction,
laws of

Galileo
Gearwheel

Gravity,

law of

Hooke’s law

Impulse
Inertial frame

Integration

Interaction
Interval (spacetime)

Invariance

Irrigation

Joule (J), unit

Kepler’s laws
Kinematics
Kinetic energy (KE)

Lamina
Lever
Linear momentum
Lorentz transformation

Machines

Mass
Mass density
Mass-energy relation
Mechanics
Mechanical advantage

Mechanism
Metric axiom
Moment,

of force
of inertia

of momentum
Motion,

constants of
of rigid bodies

rotational
translational

Newton (N), unit
Newton’s Laws,
Numerical methods
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Orbit

Parabola
Parametric representation

Pendulum
Period

Pivot
Position vector

Potential energy
Power

Power transmission
Projectiles

Proper mass
Proper time

Pseudo-vector

Ratchet and pawl
Relativity theory

Rest mass
Rigid bodies,

motion of
Rotation

Simultaneous equations

Spacetime
Statics

Tension

Torque
Transformation

Vector(s),
components of
in 4-space
sum of
orthogonal
projection of
unit

Vector product
Velocity vector.

components of

Water wheel
Watt (W), unit
Weight
Work,

unit of
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